perm filename LOSS.1[TIM,LSP]21 blob
sn#760884 filedate 1984-07-14 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00020 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00003 00002 (declare
C00007 00003 (baz 50)
C00008 00004
C00009 00005 dir *.tim/foo
C00011 00006 (load "fmeter.lsp")
C00012 00007 (fasload float)
C00013 00008 (fasload float)
C00016 00009 (fasload float)
C00023 00010
C00024 00011 (load "chart.lsp")
C00036 00012 (array p fixnum 100)
C00037 00013 (fasload puzzl1)
C00038 00014 (fasload puzzle deb)
C00097 00015 Here are the ones I've done so far:
C00126 00016 ∂30-Apr-84 1241 KESSLER@UTAH-20.ARPA Cray timings
C00149 00017 Actually, here is the timing for the 3x3 prime square, searching primes < 100.
C00150 00018 Scott, when I compile this on the PERQ, load it, and then say
C00151 00019 (defun pr ()
C00153 00020 (load "data.bch")
C00158 ENDMK
C⊗;
(declare
(fasload meter fas))
(declare
(setq meter:count-only t))
;(meter:meter baz
; (meter-funs ((+ "+'s")(= "='s"))
; (defun baz (n)
; (do ((n n (1- n))
; (a 0))
; ((= n 0) a)
; (foo n)
; (setq a (+ a n)))) )
; (meter-funs ((+ "+'s")(= "='s"))
; (defun foo (n)
; (do ((n n (1- n))
; (a 0))
; ((= n 0) a)
; (setq a (+ a n))))))
(meter:meter baz
(meter-funs ((+ "+'s")(= "='s")(foo "Calls to FOO"))
(defun baz (n)
(mn "baz" baz)
(do ((n n (1- n))
(a 0))
((= n 0) a)
(foo n)
(setq a (+ a n)))))
(meter-funs ((+ "+'s")(= "='s"))
(defun foo (n)
(mn "Foo" foo)
(do ((n n (1- n))
(a 0))
((= n 0) a)
(setq a (+ a n))))))
(meter:meter baz
(meter-funs ((cdr "cdr")(car "car")
(foo "Foo")(setq "Setq")
(cdar "car"car)(ztesch "Ztesch")
(cdar "cdr" cdr))
(defun baz (l)
(setq l (ztesch l))
(foo (car l)
(cdr l)
(cdar l)))))
;(baz 50)
;(meter:report-baz)
;Statistics
;= <calls> (<percentage>) [runtime (<percentage>)]
;
;Meter for: BAZ
;='s = 51 (33.77%) [0.0 (0.0%)]
;Calls to FOO = 50 (33.11%) [0.06 (100.0%)]
;+'s = 50 (33.11%) [0.0 (0.0%)]
;Total = 151 0.06
;
;Meter for: FOO
;='s = 1325 (50.96%) [0.02 (64.52%)]
;+'s = 1275 (49.04%) [0.011 (35.48%)]
;Total = 2600 0.031
;T
;(baz 50)
;(meter:report-baz)
;Statistics
= <calls> (<percentage>)
;
;Meter for: BAZ
;='s = 51 (33.77%)
;Calls to FOO = 50 (33.11%)
;+'s = 50 (33.11%)
;Total = 151
;
;Meter for: FOO
;='s = 1325 (50.96%)
;+'s = 1275 (49.04%)
;Total = 2600
Meter for: MATCH
Cars = 1319800 (34.63%) [10.632 (19.37%)]
Eqs = 755700 (19.83%) [6.953 (12.67%)]
Nulls = 504100 (13.23%) [4.369 (7.96%)]
Cdrs = 483400 (12.68%) [3.852 (7.02%)]
Conses = 239200 (6.28%) [21.24 (38.69%)]
Char1 = 226800 (5.95%) [6.777 (12.35%)]
MATCH = 213600 (5.6%)
Nconcs = 69000 (1.81%) [1.071 (1.95%)]
Returns = 0 (0.0%) [0.0 (0.0%)]
Total = 3811600 [54.894]
dir *.tim/foo
copy jqj.tim←SCCPP.TIM[TIM,LSP],DOLPHI.TIM[TIM,LSP],780.TIM[TIM,LSP],DOLPH.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,DERIV.TIM[TIM,LSP],TAK.TIM[TIM,LSP],DDERIV.TIM[TIM,LSP],FPRINT.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,PUZZLE.TIM[TIM,LSP],FRPOLY.TIM[TIM,LSP],TAKL.TIM[TIM,LSP],TAKR.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,CACHE.TIM[TIM,LSP],FFT.TIM[TIM,LSP],UNCACH.TIM[TIM,LSP],FDDERI.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,F2.TIM[TIM,LSP],TRIANG.TIM[TIM,LSP],BROWSE.TIM[TIM,LSP],DIV2.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,TPRINT.TIM[TIM,LSP],FREAD.TIM[TIM,LSP],BOYER.TIM[TIM,LSP],DESTRU.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,PUZZL1.TIM[TIM,LSP],NREVER.TIM[TIM,LSP],TRAVER.TIM[TIM,LSP]
Exit
↑C
.
File already exists, DSK:JQJ.TIM[TIM,LSP].
Type Y to replace.
y
Exit
↑C
.
File already exists, DSK:JQJ.TIM[TIM,LSP].
Type Y to replace.
(plus 15339 2005 2005 1987 13)
(load "fmeter.lsp")
(setq meter:funs '((* "*")(+ "+")
(setq "setq's")
(1+ "1+'s")(store "Asets")
(- "-'s")(+ "+'s")(↑ "↑'s")(+$ "+$'s")(-$ "-$'s")(arraycall "Arefs")))
(fasload float)
(machar)
*ibeta*
*it*
*irnd*
*ngrd*
*machep*
*epsneg*
*negep*
*eps*
*iexp*
*minexp*
*maxexp*
*xmin*
*xmax*
(let ((a (square-root 2.0))) (*$ a a))
(sq (square-root 2365.2343))
(defun sq (x)(*$ x x))
(plist 'sqrt)
(sqrt 2.0)
(square-root 2.0)
(fasload float)
(fasload float)
(sqrt-test)
(TEST OF SQRT (X * X) - X)
(8000 RANDOM ARGUMENTS WERE TESTED IN THE INTERVAL (0.70710678 1.0))
(SQRT (X) WAS LARGER 618 TIMES)
(IT AGREED 7382 TIMES)
(IT WAS SMALLER 0 TIMES)
(THERE ARE 27 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 1.05350655E-8 = 2 ↑ -26.5002255 OCCURRED
FOR X = 0.707217306)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.499774456)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 2.61463252E-9 = 2 ↑ -28.5107443)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(TEST OF SQRT (X * X) - X)
(8000 RANDOM ARGUMENTS WERE TESTED IN THE INTERVAL (1.0 1.41421357))
(SQRT (X) WAS LARGER 3928 TIMES)
(IT AGREED 4072 TIMES)
(IT WAS SMALLER 0 TIMES)
(THERE ARE 27 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 1.48971613E-8 = 2 ↑ -26.0003872 OCCURRED
FOR X = 1.0002685)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.99961281)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 8.7896637E-9 = 2 ↑ -26.761545)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.238455057)
(TEST OF SPECIAL ARGUMENTS)
(SQRT (*XMIN*) = SQRT (2.93873587E-39) = 5.421011E-20)
(SQRT (1.0 - *EPSNEG*) = SQRT (1.0 - 7.4505806E-9) = 1.0)
(SQRT (1.0) = 1.00000001)
(SQRT (1.0 + *EPS*) = SQRT (1.0 + 7.4505806E-9) = 1.00000001)
(SQRT (*XMAX*) = SQRT (1.70141183E+38) = 1.30438179E+19)
(TEST OF ERROR RETURNS)
(SQRT WILL BE CALLED WITH AN ARGUMENT OF 0.0 THIS SHOULD NOT TRIGGER AN
ERROR)
(SQRT RETURNED THE VALUE 0.0)
(SQRT WILL BE CALLED WITH AN ARGUMENT OF -1.0 THIS SHOULD TRIGGER AN ERROR)
Square-root of a negative number
(SQRT RETURNED THE VALUE 0.0)
(THIS CONCLUDES THE TESTS)
T
(fasload float)
(fasload machar)
(setq *results* ())
(step arctan-test)
(arctan-test)
(show-results)
arctan2 called with u = 0.0 and v = 0.0
T
(TEST OF ARCTAN (X) VS TRUNCATED TAYLOR SERIES)
(2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL (-0.0625 0.0625))
(ARCTAN (X) WAS LARGER 0 TIMES)
(IT AGREED 2000 TIMES)
(IT WAS SMALLER 0 TIMES)
(THERE ARE 27 SIGNIFICANT BASE 2 DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 0.0 = 2 ↑ -999.0 OCCURRED FOR X = 0.0)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.0 = 2 ↑ -999.0)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(TEST OF ARCTAN (X) VS ARCTAN (1 // 16) + ARCTAN ((X - 1 // 16) // (1 +
X // 16)))
(2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL (0.0625 0.267949194))
(ARCTAN (X) WAS LARGER 305 TIMES)
(IT AGREED 1301 TIMES)
(IT WAS SMALLER 394 TIMES)
(THERE ARE 27 SIGNIFICANT BASE 2 DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 1.48773032E-8 = 2 ↑ -26.0023117 OCCURRED
FOR X = 0.255769014)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.99768829)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 6.10085046E-9 = 2 ↑ -27.2883422)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(TEST OF 2 * ARCTAN (X) VS ARCTAN (2X // (1 - X * X)))
(2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL (0.267949194 0.414213568))
(ARCTAN (X) WAS LARGER 465 TIMES)
(IT AGREED 1255 TIMES)
(IT WAS SMALLER 280 TIMES)
(THERE ARE 27 SIGNIFICANT BASE 2 DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 2.8151059E-8 = 2 ↑ -25.0822356 OCCURRED
FOR X = 0.271022182)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.91776443)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 7.2907918E-9 = 2 ↑ -27.0312774)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL (0.414213568 1.0))
(ARCTAN (X) WAS LARGER 755 TIMES)
(IT AGREED 1223 TIMES)
(IT WAS SMALLER 22 TIMES)
(THERE ARE 27 SIGNIFICANT BASE 2 DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 1.8836265E-8 = 2 ↑ -25.6619117 OCCURRED
FOR X = 0.41755109)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.33808827)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 6.77307993E-9 = 2 ↑ -27.1375408)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(SPECIAL TESTS)
(THE IDENTITY: ARCTAN (-X) = -ARCTAN (X) WILL BE TESTED)
(X : F (X) + F (-X))
(0.277842846 : 0.0)
(4.7303558 : 0.0)
(1.29447147 : 0.0)
(1.80893339 : 0.0)
(1.116675 : 0.0)
(THE IDENTITY ARCTAN (X) = X FOR X SMALL WILL BE TESTED)
(X : X - F (X))
(6.83125204E-9 : 0.0)
(3.41562602E-9 : 0.0)
(1.70781301E-9 : 0.0)
(8.5390651E-10 : 0.0)
(4.26953256E-10 : 0.0)
(THE IDENTITY ARCTAN (X // Y) = ARCTAN2 (X Y) WILL BE TESTED)
(THE FIRST COLUMN OF RESULTS SHOULD BE 0 AND THE SECOND SHOULD BE +-π)
(X : Y : F1 (X // Y) - F2 (X Y) : F1 (X // Y) - F2 (X // -Y))
(0.437566936 : 0.173966983 : 0.0 : -3.14159265)
(0.98349154 : 0.234110685 : 0.0 : -3.14159265)
(-0.944657445 : 0.97945464 : 0.0 : 3.14159265)
(-0.27268049 : 0.97873473 : 0.0 : 3.14159265)
(-0.6326329 : 0.73022202 : 0.0 : 3.14159268)
(TEST OF VERY SMALL ARGUMENT)
(ARCTAN (1.2621776E-29) = 1.2621776E-29)
(TEST OF ERROR RETURNS)
(ARCTAN WILL BE CALLED WITH THE ARGUMENT 1.70141183E+38)
(THIS SHOULD NOT TRIGGER AN ERROR MESSAGE)
(ARCTAN (1.70141183E+38) = 1.57079633)
(ARCTAN2 WILL BE CALLED WITH THE ARGUMENTS 1.0 0.0)
(THIS SHOULD NOT TRIGGER AN ERROR MESSAGE)
(ARCTAN2 (1.0 0.0) = 1.57079633)
(ARCTAN2 WILL BE CALLED WITH THE ARGUMENTS 2.93873587E-39 1.70141183E+38)
(THIS SHOULD NOT TRIGGER AN ERROR MESSAGE)
(ARCTAN2 (2.93873587E-39 1.70141183E+38) = 1.57079633)
(ARCTAN2 WILL BE CALLED WITH THE ARGUMENTS 1.70141183E+38 2.93873587E-39)
(THIS SHOULD NOT TRIGGER AN ERROR MESSAGE)
(ARCTAN2 (1.70141183E+38 2.93873587E-39) = 0.0)
(ARCTAN2 WILL BE CALLED WITH THE ARGUMENTS 0.0 0.0)
(THIS SHOULD TRIGGER AN ERROR MESSAGE)
(ARCTAN2 (0.0 0.0) = 0.0)
(THIS CONCLUDES THE TESTS)
T
(load "chart.lsp")
(load "data.bch")
(fasload chart fas)
(fasload data fas)
(do-chart '(franz780 franz750 franz68k nil750))
Benchmark | 780 Franz | 750 Franz | Franz 68000 | 750 NIL |
-------------------------------------------------------------------|
| | | | |
Boyer | 71.5 | 111.45 | 139.86 | 165.11 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Browse | 170.25 | 261.14 | 413.03 | 2326.38 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Destruct | 13.73 | 15.63 | 22.99 | 17.91 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Traverse | | | | |
Initialize | 30.27 | 52.28 | - | - |
Traverse | 82.98 | 132.62 | - | - |
| | | | |
-------------------------------------------------------------------|
| | | | |
Tak | 8.29 | 14.8 | - | 8.32 |
| | | | |
-------------------------------------------------------------------|
| | | | |
STak | 6.32 | 11.18 | 11.17 | 46.38 |
| | | | |
-------------------------------------------------------------------|
| | | | |
CTak | 12.05 | 18.34 | 20.75 | 19.83 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Takl | 9.72 | 18.4 | 19.75 | 78.4 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Takr | 3.62 | 5.08 | - | 11.42 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Deriv | - | - | - | 47.32 |
| | | | |
-------------------------------------------------------------------|
| | | | |
DDeriv | - | - | - | 55.9 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Fdderiv | - | - | - | 54.74 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Div2 | | | | |
Iterative | 19.97 | 25.84 | 32.81 | 19.38 |
Recursive | 24.65 | 31.88 | 36.19 | 29.85 |
| | | | |
-------------------------------------------------------------------|
| | | | |
FFT | - | - | - | 73.76 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Puzzle | - | - | - | 995.87 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Triang | - | - | - | 1302.08 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Fprint | 0.61 | 1.23 | 1.43 | 75.88 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Fread | 1.48 | 2.34 | 2.81 | 55.8 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Tprint | 0.52 | 0.87 | 1.65 | 105.86 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Frpoly | | | | |
Power = 2 | | | | |
r=x+y+z+1 | 0.02 | 0.05 | - | 0.04 |
r2=1000*r | 0.02 | 0.03 | - | 0.3 |
r3=r in flonums | 0.03 | 0.03 | - | 0.1 |
Power = 5 | | | | |
r=x+y+z+1 | 0.02 | 0.35 | - | 0.72 |
r2=1000*r | 0.38 | 1.75 | - | 4.3 |
r3=r in flonums | 0.22 | 1.69 | - | 0.85 |
Power = 10 | | | | |
r=x+y+z+1 | 2.33 | 6.75 | - | 7.73 |
r2=1000*r | 10.27 | 20.77 | - | 77.7 |
r3=r in flonums | 2.6 | 10.22 | - | 9.3 |
Power = 15 | | | | |
r=x+y+z+1 | 24.62 | 46.35 | - | 50.74 |
r2=1000*r | 116.88 | 222.6 | - | - |
r3=r in flonums | 31.85 | 52.47 | - | - |
| | | | |
-------------------------------------------------------------------|
T
(array p fixnum 100)
(defmacro seta (array index1 index2 value)
`(store (,array (+ ,index1 (* ,index2 2))) ,value))
(defmacro elt (array index1 index2)
`(,array (+ ,index1 (* ,index2 2))))
(let((n 0))
(do ((i 0 (1+ i)))
((= i 2.) t)
(do ((j 0 (1+ j)))
((= j 50.) t)
(seta p i j n) (setq n (1+ n)))))))
(do ((i 0 (1+ i)))
((= i 2.) t)
(do ((j 0 (1+ j)))
((= j 50.) t)
(print (elt p i j )))))
(listarray 'p)
(fasload puzzl1)
(start)
Piece 2 at 2
Piece 9 at 355
Piece 8 at 331
Piece 4 at 292
Piece 14 at 279
Piece 13 at 277
Piece 6 at 276
Piece 2 at 268
Piece 2 at 220
Piece 4 at 204
Piece 2 at 203
Piece 2 at 155
Piece 10 at 139
Piece 3 at 111
Piece 3 at 109
Piece 2 at 107
Piece 4 at 91
success in 2005 trials
NIL
(fasload puzzle deb)
(start)
(TRIAL 0 77)
(TRIAL 0 89)
(TRIAL 0 105)
(TRIAL 0 107)
(TRIAL 0 109)
(TRIAL 0 137)
(TRIAL 0 153)
(TRIAL 0 201)
(TRIAL 0 205)
(TRIAL 0 217)
(TRIAL 0 265)
(TRIAL 0 281)
(TRIAL 0 301)
(TRIAL 1 289)
(TRIAL 1 301)
(TRIAL 2 292)
(TRIAL 3 291)
(TRIAL 5 284)
(TRIAL 5 289)
(TRIAL 5 301)
(TRIAL 8 283)
(TRIAL 8 301)
(TRIAL 10 283)
(TRIAL 10 289)
(TRIAL 12 282)
(TRIAL 12 290)
(TRIAL 12 301)
(TRIAL 14 284)
(TRIAL 16 283)
(TRIAL 16 301)
(TRIAL 17 291)
(TRIAL 18 284)
(TRIAL 21 266)
(TRIAL 21 267)
(TRIAL 21 268)
(TRIAL 21 292)
(TRIAL 22 284)
(TRIAL 24 301)
(TRIAL 25 268)
(TRIAL 25 291)
(TRIAL 26 291)
(TRIAL 26 301)
(TRIAL 28 284)
(TRIAL 30 283)
(TRIAL 30 301)
(TRIAL 32 275)
(TRIAL 32 276)
(TRIAL 32 301)
(TRIAL 34 291)
(TRIAL 36 268)
(TRIAL 36 283)
(TRIAL 37 283)
(TRIAL 39 283)
(TRIAL 39 301)
(TRIAL 40 291)
(TRIAL 41 284)
(TRIAL 44 268)
(TRIAL 44 301)
(TRIAL 45 292)
(TRIAL 46 284)
(TRIAL 48 274)
(TRIAL 48 282)
(TRIAL 48 284)
(TRIAL 49 284)
(TRIAL 50 283)
(TRIAL 50 301)
(TRIAL 52 284)
(TRIAL 52 301)
(TRIAL 55 275)
(TRIAL 55 291)
(TRIAL 56 283)
(TRIAL 56 301)
(TRIAL 58 276)
(TRIAL 59 291)
(TRIAL 59 301)
(TRIAL 62 276)
(TRIAL 62 290)
(TRIAL 64 276)
(TRIAL 64 282)
(TRIAL 64 301)
(TRIAL 67 275)
(TRIAL 67 276)
(TRIAL 68 290)
(TRIAL 68 301)
(TRIAL 71 276)
(TRIAL 71 290)
(TRIAL 71 301)
(TRIAL 73 290)
(TRIAL 73 301)
(TRIAL 77 267)
(TRIAL 77 268)
(TRIAL 77 290)
(TRIAL 78 290)
(TRIAL 79 284)
(TRIAL 81 290)
(TRIAL 82 268)
(TRIAL 82 290)
(TRIAL 82 301)
(TRIAL 84 284)
(TRIAL 86 283)
(TRIAL 86 290)
(TRIAL 88 275)
(TRIAL 88 276)
(TRIAL 89 290)
(TRIAL 89 301)
(TRIAL 92 268)
(TRIAL 92 283)
(TRIAL 93 283)
(TRIAL 95 283)
(TRIAL 95 290)
(TRIAL 96 290)
(TRIAL 96 301)
(TRIAL 98 284)
(TRIAL 101 268)
(TRIAL 101 282)
(TRIAL 101 301)
(TRIAL 103 282)
(TRIAL 103 292)
(TRIAL 106 268)
(TRIAL 106 274)
(TRIAL 106 275)
(TRIAL 106 301)
(TRIAL 108 290)
(TRIAL 110 274)
(TRIAL 110 275)
(TRIAL 111 290)
(TRIAL 111 301)
(TRIAL 115 267)
(TRIAL 115 268)
(TRIAL 115 282)
(TRIAL 116 282)
(TRIAL 118 282)
(TRIAL 119 268)
(TRIAL 119 282)
(TRIAL 120 282)
(TRIAL 122 282)
(TRIAL 122 290)
(TRIAL 122 301)
(TRIAL 126 268)
(TRIAL 126 282)
(TRIAL 126 301)
(TRIAL 127 290)
(TRIAL 128 283)
(TRIAL 130 282)
(TRIAL 130 292)
(TRIAL 131 290)
(TRIAL 131 301)
(TRIAL 133 283)
(TRIAL 135 282)
(TRIAL 135 290)
(TRIAL 135 301)
(TRIAL 140 267)
(TRIAL 140 268)
(TRIAL 140 301)
(TRIAL 141 292)
(TRIAL 142 284)
(TRIAL 144 301)
(TRIAL 145 268)
(TRIAL 145 291)
(TRIAL 146 291)
(TRIAL 146 301)
(TRIAL 148 284)
(TRIAL 150 283)
(TRIAL 150 301)
(TRIAL 152 275)
(TRIAL 152 276)
(TRIAL 152 301)
(TRIAL 154 291)
(TRIAL 156 268)
(TRIAL 156 283)
(TRIAL 157 283)
(TRIAL 159 283)
(TRIAL 159 301)
(TRIAL 160 291)
(TRIAL 161 284)
(TRIAL 164 273)
(TRIAL 164 289)
(TRIAL 164 301)
(TRIAL 165 292)
(TRIAL 166 291)
(TRIAL 168 281)
(TRIAL 168 301)
(TRIAL 169 289)
(TRIAL 169 292)
(TRIAL 170 291)
(TRIAL 172 284)
(TRIAL 172 289)
(TRIAL 172 301)
(TRIAL 175 283)
(TRIAL 175 301)
(TRIAL 177 283)
(TRIAL 177 289)
(TRIAL 179 282)
(TRIAL 179 290)
(TRIAL 179 301)
(TRIAL 181 284)
(TRIAL 183 283)
(TRIAL 183 301)
(TRIAL 184 291)
(TRIAL 185 284)
(TRIAL 188 276)
(TRIAL 188 281)
(TRIAL 188 283)
(TRIAL 189 283)
(TRIAL 190 282)
(TRIAL 190 301)
(TRIAL 192 283)
(TRIAL 192 301)
(TRIAL 195 281)
(TRIAL 195 289)
(TRIAL 195 301)
(TRIAL 197 283)
(TRIAL 200 274)
(TRIAL 200 282)
(TRIAL 200 284)
(TRIAL 201 284)
(TRIAL 202 283)
(TRIAL 202 301)
(TRIAL 204 284)
(TRIAL 204 301)
(TRIAL 207 275)
(TRIAL 207 291)
(TRIAL 208 283)
(TRIAL 208 301)
(TRIAL 210 276)
(TRIAL 211 291)
(TRIAL 211 301)
(TRIAL 214 276)
(TRIAL 214 290)
(TRIAL 216 276)
(TRIAL 216 282)
(TRIAL 216 301)
(TRIAL 219 275)
(TRIAL 219 276)
(TRIAL 220 290)
(TRIAL 220 301)
(TRIAL 223 276)
(TRIAL 223 290)
(TRIAL 223 301)
(TRIAL 225 290)
(TRIAL 225 301)
(TRIAL 229 275)
(TRIAL 229 276)
(TRIAL 229 289)
(TRIAL 231 289)
(TRIAL 231 301)
(TRIAL 232 292)
(TRIAL 235 275)
(TRIAL 235 276)
(TRIAL 235 281)
(TRIAL 235 301)
(TRIAL 238 281)
(TRIAL 240 274)
(TRIAL 240 282)
(TRIAL 240 289)
(TRIAL 240 301)
(TRIAL 242 284)
(TRIAL 244 275)
(TRIAL 244 276)
(TRIAL 245 289)
(TRIAL 247 276)
(TRIAL 247 289)
(TRIAL 247 301)
(TRIAL 251 275)
(TRIAL 251 276)
(TRIAL 251 289)
(TRIAL 251 301)
(TRIAL 253 289)
(TRIAL 255 289)
(TRIAL 255 301)
(TRIAL 256 292)
(TRIAL 258 283)
(TRIAL 259 276)
(TRIAL 259 289)
(TRIAL 259 301)
(TRIAL 264 268)
(TRIAL 264 273)
(TRIAL 264 281)
(TRIAL 264 283)
(TRIAL 265 283)
(TRIAL 266 282)
(TRIAL 266 301)
(TRIAL 268 283)
(TRIAL 268 301)
(TRIAL 271 274)
(TRIAL 271 290)
(TRIAL 272 282)
(TRIAL 272 301)
(TRIAL 274 275)
(TRIAL 275 290)
(TRIAL 275 301)
(TRIAL 278 275)
(TRIAL 278 289)
(TRIAL 280 275)
(TRIAL 280 281)
(TRIAL 280 301)
(TRIAL 283 274)
(TRIAL 283 275)
(TRIAL 284 289)
(TRIAL 284 301)
(TRIAL 287 275)
(TRIAL 287 289)
(TRIAL 287 301)
(TRIAL 289 289)
(TRIAL 289 301)
(TRIAL 293 273)
(TRIAL 293 275)
(TRIAL 294 275)
(TRIAL 295 274)
(TRIAL 295 289)
(TRIAL 295 301)
(TRIAL 298 275)
(TRIAL 298 289)
(TRIAL 298 301)
(TRIAL 302 273)
(TRIAL 302 281)
(TRIAL 302 301)
(TRIAL 303 289)
(TRIAL 303 301)
(TRIAL 305 283)
(TRIAL 307 274)
(TRIAL 307 284)
(TRIAL 309 275)
(TRIAL 309 284)
(TRIAL 313 266)
(TRIAL 313 267)
(TRIAL 313 268)
(TRIAL 313 289)
(TRIAL 314 289)
(TRIAL 315 284)
(TRIAL 317 289)
(TRIAL 318 268)
(TRIAL 318 289)
(TRIAL 319 284)
(TRIAL 321 283)
(TRIAL 321 289)
(TRIAL 323 275)
(TRIAL 323 276)
(TRIAL 324 289)
(TRIAL 326 268)
(TRIAL 326 283)
(TRIAL 327 283)
(TRIAL 329 283)
(TRIAL 329 289)
(TRIAL 330 289)
(TRIAL 331 284)
(TRIAL 334 268)
(TRIAL 334 289)
(TRIAL 335 289)
(TRIAL 336 284)
(TRIAL 338 274)
(TRIAL 338 276)
(TRIAL 339 276)
(TRIAL 340 275)
(TRIAL 340 289)
(TRIAL 340 301)
(TRIAL 343 276)
(TRIAL 343 289)
(TRIAL 343 301)
(TRIAL 347 267)
(TRIAL 347 268)
(TRIAL 347 289)
(TRIAL 347 301)
(TRIAL 349 284)
(TRIAL 351 289)
(TRIAL 351 301)
(TRIAL 353 283)
(TRIAL 353 289)
(TRIAL 355 275)
(TRIAL 355 289)
(TRIAL 355 301)
(TRIAL 358 268)
(TRIAL 358 283)
(TRIAL 360 283)
(TRIAL 360 289)
(TRIAL 361 289)
(TRIAL 361 301)
(TRIAL 363 284)
(TRIAL 366 268)
(TRIAL 366 282)
(TRIAL 366 289)
(TRIAL 368 282)
(TRIAL 368 289)
(TRIAL 371 268)
(TRIAL 371 274)
(TRIAL 371 275)
(TRIAL 372 289)
(TRIAL 372 301)
(TRIAL 375 274)
(TRIAL 375 289)
(TRIAL 375 301)
(TRIAL 379 267)
(TRIAL 379 268)
(TRIAL 379 282)
(TRIAL 380 282)
(TRIAL 382 282)
(TRIAL 383 268)
(TRIAL 383 282)
(TRIAL 385 282)
(TRIAL 385 289)
(TRIAL 385 301)
(TRIAL 389 268)
(TRIAL 389 282)
(TRIAL 389 289)
(TRIAL 390 289)
(TRIAL 390 301)
(TRIAL 392 283)
(TRIAL 394 282)
(TRIAL 394 289)
(TRIAL 395 289)
(TRIAL 395 301)
(TRIAL 397 283)
(TRIAL 399 282)
(TRIAL 399 289)
(TRIAL 399 301)
(TRIAL 404 267)
(TRIAL 404 268)
(TRIAL 404 281)
(TRIAL 404 301)
(TRIAL 406 281)
(TRIAL 406 292)
(TRIAL 409 281)
(TRIAL 409 301)
(TRIAL 411 268)
(TRIAL 411 281)
(TRIAL 411 291)
(TRIAL 413 281)
(TRIAL 413 291)
(TRIAL 416 281)
(TRIAL 416 301)
(TRIAL 417 289)
(TRIAL 417 301)
(TRIAL 418 292)
(TRIAL 420 284)
(TRIAL 423 267)
(TRIAL 423 268)
(TRIAL 423 273)
(TRIAL 423 274)
(TRIAL 423 301)
(TRIAL 425 289)
(TRIAL 427 273)
(TRIAL 427 274)
(TRIAL 428 289)
(TRIAL 431 273)
(TRIAL 431 274)
(TRIAL 431 301)
(TRIAL 433 289)
(TRIAL 435 268)
(TRIAL 435 273)
(TRIAL 435 274)
(TRIAL 436 289)
(TRIAL 436 301)
(TRIAL 439 273)
(TRIAL 439 289)
(TRIAL 439 301)
(TRIAL 443 273)
(TRIAL 443 274)
(TRIAL 443 283)
(TRIAL 447 266)
(TRIAL 447 267)
(TRIAL 447 268)
(TRIAL 447 281)
(TRIAL 448 281)
(TRIAL 450 281)
(TRIAL 451 268)
(TRIAL 451 281)
(TRIAL 452 281)
(TRIAL 454 281)
(TRIAL 456 268)
(TRIAL 456 281)
(TRIAL 457 281)
(TRIAL 459 274)
(TRIAL 459 281)
(TRIAL 459 301)
(TRIAL 460 289)
(TRIAL 460 301)
(TRIAL 462 283)
(TRIAL 464 275)
(TRIAL 464 281)
(TRIAL 466 276)
(TRIAL 466 281)
(TRIAL 469 267)
(TRIAL 469 268)
(TRIAL 469 281)
(TRIAL 470 281)
(TRIAL 472 281)
(TRIAL 473 268)
(TRIAL 473 281)
(TRIAL 475 281)
(TRIAL 477 268)
(TRIAL 477 281)
(TRIAL 477 289)
(TRIAL 477 301)
(TRIAL 480 281)
(TRIAL 480 289)
(TRIAL 480 301)
(TRIAL 485 267)
(TRIAL 485 268)
(TRIAL 485 281)
(TRIAL 485 301)
(TRIAL 486 289)
(TRIAL 487 282)
(TRIAL 489 281)
(TRIAL 489 292)
(TRIAL 490 289)
(TRIAL 491 282)
(TRIAL 493 281)
(TRIAL 495 281)
(TRIAL 495 301)
(TRIAL 496 289)
(TRIAL 497 282)
(TRIAL 499 268)
(TRIAL 499 281)
(TRIAL 499 291)
(TRIAL 500 289)
(TRIAL 500 301)
(TRIAL 502 282)
(TRIAL 504 281)
(TRIAL 504 291)
(TRIAL 505 289)
(TRIAL 505 301)
(TRIAL 507 282)
(TRIAL 509 281)
(TRIAL 511 281)
(TRIAL 511 301)
(TRIAL 512 289)
(TRIAL 512 301)
(TRIAL 513 292)
(TRIAL 515 284)
(TRIAL 517 275)
(TRIAL 517 276)
(TRIAL 517 281)
(TRIAL 520 268)
(TRIAL 520 281)
(TRIAL 520 289)
(TRIAL 520 301)
(TRIAL 523 281)
(TRIAL 523 289)
(TRIAL 523 301)
(TRIAL 529 225)
(TRIAL 529 265)
(TRIAL 529 301)
(TRIAL 530 273)
(TRIAL 530 301)
(TRIAL 531 276)
(TRIAL 532 275)
(TRIAL 534 268)
(TRIAL 534 273)
(TRIAL 534 301)
(TRIAL 537 267)
(TRIAL 537 301)
(TRIAL 539 267)
(TRIAL 539 273)
(TRIAL 541 266)
(TRIAL 541 274)
(TRIAL 541 301)
(TRIAL 543 268)
(TRIAL 545 267)
(TRIAL 545 301)
(TRIAL 546 275)
(TRIAL 547 268)
(TRIAL 550 228)
(TRIAL 550 265)
(TRIAL 550 289)
(TRIAL 550 291)
(TRIAL 552 273)
(TRIAL 552 289)
(TRIAL 552 291)
(TRIAL 554 275)
(TRIAL 556 267)
(TRIAL 556 289)
(TRIAL 558 267)
(TRIAL 558 273)
(TRIAL 560 266)
(TRIAL 560 268)
(TRIAL 562 267)
(TRIAL 562 289)
(TRIAL 563 275)
(TRIAL 564 268)
(TRIAL 568 226)
(TRIAL 568 265)
(TRIAL 568 290)
(TRIAL 568 292)
(TRIAL 570 273)
(TRIAL 570 290)
(TRIAL 570 292)
(TRIAL 572 275)
(TRIAL 574 267)
(TRIAL 574 290)
(TRIAL 576 267)
(TRIAL 576 273)
(TRIAL 578 266)
(TRIAL 578 268)
(TRIAL 580 267)
(TRIAL 580 290)
(TRIAL 581 275)
(TRIAL 582 268)
(TRIAL 585 227)
(TRIAL 585 265)
(TRIAL 585 301)
(TRIAL 586 273)
(TRIAL 586 301)
(TRIAL 588 267)
(TRIAL 591 228)
(TRIAL 591 265)
(TRIAL 591 301)
(TRIAL 592 273)
(TRIAL 592 301)
(TRIAL 594 267)
(TRIAL 598 227)
(TRIAL 598 228)
(TRIAL 598 265)
(TRIAL 598 301)
(TRIAL 599 273)
(TRIAL 599 301)
(TRIAL 601 267)
(TRIAL 606 220)
(TRIAL 606 225)
(TRIAL 606 265)
(TRIAL 606 281)
(TRIAL 606 283)
(TRIAL 608 273)
(TRIAL 608 281)
(TRIAL 608 283)
(TRIAL 610 275)
(TRIAL 611 275)
(TRIAL 612 274)
(TRIAL 612 276)
(TRIAL 614 275)
(TRIAL 614 283)
(TRIAL 615 276)
(TRIAL 618 267)
(TRIAL 618 281)
(TRIAL 620 267)
(TRIAL 620 273)
(TRIAL 622 266)
(TRIAL 622 268)
(TRIAL 624 267)
(TRIAL 624 281)
(TRIAL 625 275)
(TRIAL 626 268)
(TRIAL 629 227)
(TRIAL 631 225)
(TRIAL 631 265)
(TRIAL 631 281)
(TRIAL 631 283)
(TRIAL 633 266)
(TRIAL 633 267)
(TRIAL 633 268)
(TRIAL 634 283)
(TRIAL 636 268)
(TRIAL 637 268)
(TRIAL 639 267)
(TRIAL 639 268)
(TRIAL 640 283)
(TRIAL 642 273)
(TRIAL 642 281)
(TRIAL 642 283)
(TRIAL 644 275)
(TRIAL 646 267)
(TRIAL 646 268)
(TRIAL 649 226)
(TRIAL 652 218)
(TRIAL 652 225)
(TRIAL 652 265)
(TRIAL 652 282)
(TRIAL 652 284)
(TRIAL 654 273)
(TRIAL 654 282)
(TRIAL 654 284)
(TRIAL 656 275)
(TRIAL 656 282)
(TRIAL 659 267)
(TRIAL 659 282)
(TRIAL 661 267)
(TRIAL 661 273)
(TRIAL 663 266)
(TRIAL 663 268)
(TRIAL 665 267)
(TRIAL 665 282)
(TRIAL 666 275)
(TRIAL 667 268)
(TRIAL 670 227)
(TRIAL 672 219)
(TRIAL 672 225)
(TRIAL 673 225)
(TRIAL 673 265)
(TRIAL 673 301)
(TRIAL 674 273)
(TRIAL 674 301)
(TRIAL 676 267)
(TRIAL 679 220)
(TRIAL 680 225)
(TRIAL 680 265)
(TRIAL 680 301)
(TRIAL 681 273)
(TRIAL 681 301)
(TRIAL 686 220)
(TRIAL 686 225)
(TRIAL 688 220)
(TRIAL 688 225)
(TRIAL 688 265)
(TRIAL 688 301)
(TRIAL 689 273)
(TRIAL 689 301)
(TRIAL 691 267)
(TRIAL 695 219)
(TRIAL 695 220)
(TRIAL 696 225)
(TRIAL 696 265)
(TRIAL 696 301)
(TRIAL 697 273)
(TRIAL 697 301)
(TRIAL 702 220)
(TRIAL 702 225)
(TRIAL 703 225)
(TRIAL 703 265)
(TRIAL 703 301)
(TRIAL 704 273)
(TRIAL 704 301)
(TRIAL 710 219)
(TRIAL 710 220)
(TRIAL 710 227)
(TRIAL 712 265)
(TRIAL 712 281)
(TRIAL 713 266)
(TRIAL 713 267)
(TRIAL 714 274)
(TRIAL 714 282)
(TRIAL 715 275)
(TRIAL 717 267)
(TRIAL 719 267)
(TRIAL 720 273)
(TRIAL 720 281)
(TRIAL 721 276)
(TRIAL 722 274)
(TRIAL 722 282)
(TRIAL 723 275)
(TRIAL 726 268)
(TRIAL 727 266)
(TRIAL 727 267)
(TRIAL 728 274)
(TRIAL 729 267)
(TRIAL 733 219)
(TRIAL 733 220)
(TRIAL 733 225)
(TRIAL 733 265)
(TRIAL 733 301)
(TRIAL 734 273)
(TRIAL 734 301)
(TRIAL 736 267)
(TRIAL 740 225)
(TRIAL 740 226)
(TRIAL 740 265)
(TRIAL 740 301)
(TRIAL 741 273)
(TRIAL 741 301)
(TRIAL 747 218)
(TRIAL 747 226)
(TRIAL 747 265)
(TRIAL 747 282)
(TRIAL 747 284)
(TRIAL 749 273)
(TRIAL 749 282)
(TRIAL 749 284)
(TRIAL 752 267)
(TRIAL 752 268)
(TRIAL 752 282)
(TRIAL 754 282)
(TRIAL 757 227)
(TRIAL 759 219)
(TRIAL 759 220)
(TRIAL 760 226)
(TRIAL 760 265)
(TRIAL 760 301)
(TRIAL 761 273)
(TRIAL 761 301)
(TRIAL 766 220)
(TRIAL 766 228)
(TRIAL 766 265)
(TRIAL 766 301)
(TRIAL 767 273)
(TRIAL 767 301)
(TRIAL 773 219)
(TRIAL 773 220)
(TRIAL 773 227)
(TRIAL 773 265)
(TRIAL 773 301)
(TRIAL 774 273)
(TRIAL 774 301)
(TRIAL 778 227)
(TRIAL 778 265)
(TRIAL 778 301)
(TRIAL 779 273)
(TRIAL 779 301)
(TRIAL 784 265)
(TRIAL 784 283)
(TRIAL 785 273)
(TRIAL 785 283)
(TRIAL 786 276)
(TRIAL 786 283)
(TRIAL 789 268)
(TRIAL 789 273)
(TRIAL 789 283)
(TRIAL 791 273)
(TRIAL 794 227)
(TRIAL 794 228)
(TRIAL 794 265)
(TRIAL 794 301)
(TRIAL 795 273)
(TRIAL 795 301)
(TRIAL 800 220)
(TRIAL 800 228)
(TRIAL 800 265)
(TRIAL 800 301)
(TRIAL 801 273)
(TRIAL 801 301)
(TRIAL 808 217)
(TRIAL 808 229)
(TRIAL 808 265)
(TRIAL 808 269)
(TRIAL 808 281)
(TRIAL 808 285)
(TRIAL 809 285)
(TRIAL 810 283)
(TRIAL 813 266)
(TRIAL 813 282)
(TRIAL 813 290)
(TRIAL 813 292)
(TRIAL 815 284)
(TRIAL 816 284)
(TRIAL 817 283)
(TRIAL 817 285)
(TRIAL 819 284)
(TRIAL 819 292)
(TRIAL 820 285)
(TRIAL 823 267)
(TRIAL 823 268)
(TRIAL 823 269)
(TRIAL 823 285)
(TRIAL 825 284)
(TRIAL 826 276)
(TRIAL 826 292)
(TRIAL 828 269)
(TRIAL 829 284)
(TRIAL 829 292)
(TRIAL 830 285)
(TRIAL 833 269)
(TRIAL 833 285)
(TRIAL 835 269)
(TRIAL 836 269)
(TRIAL 837 268)
(TRIAL 837 269)
(TRIAL 838 283)
(TRIAL 840 269)
(TRIAL 840 283)
(TRIAL 843 268)
(TRIAL 843 269)
(TRIAL 843 285)
(TRIAL 845 284)
(TRIAL 846 276)
(TRIAL 846 292)
(TRIAL 848 269)
(TRIAL 849 284)
(TRIAL 849 292)
(TRIAL 850 285)
(TRIAL 853 274)
(TRIAL 853 290)
(TRIAL 853 292)
(TRIAL 855 282)
(TRIAL 855 290)
(TRIAL 855 292)
(TRIAL 857 284)
(TRIAL 858 284)
(TRIAL 859 283)
(TRIAL 859 285)
(TRIAL 861 284)
(TRIAL 861 292)
(TRIAL 862 285)
(TRIAL 865 276)
(TRIAL 865 290)
(TRIAL 867 276)
(TRIAL 867 282)
(TRIAL 869 275)
(TRIAL 869 277)
(TRIAL 871 276)
(TRIAL 871 290)
(TRIAL 872 284)
(TRIAL 873 277)
(TRIAL 876 268)
(TRIAL 876 269)
(TRIAL 877 282)
(TRIAL 877 290)
(TRIAL 880 268)
(TRIAL 880 269)
(TRIAL 881 274)
(TRIAL 883 267)
(TRIAL 883 268)
(TRIAL 883 269)
(TRIAL 884 282)
(TRIAL 886 269)
(TRIAL 887 269)
(TRIAL 889 268)
(TRIAL 889 269)
(TRIAL 889 282)
(TRIAL 891 282)
(TRIAL 891 290)
(TRIAL 893 276)
(TRIAL 894 269)
(TRIAL 897 267)
(TRIAL 897 268)
(TRIAL 897 269)
(TRIAL 897 285)
(TRIAL 899 284)
(TRIAL 900 276)
(TRIAL 900 292)
(TRIAL 902 269)
(TRIAL 903 284)
(TRIAL 903 292)
(TRIAL 904 285)
(TRIAL 907 269)
(TRIAL 907 285)
(TRIAL 909 269)
(TRIAL 910 269)
(TRIAL 911 268)
(TRIAL 911 269)
(TRIAL 912 283)
(TRIAL 914 269)
(TRIAL 914 283)
(TRIAL 917 269)
(TRIAL 917 273)
(TRIAL 917 285)
(TRIAL 918 281)
(TRIAL 918 285)
(TRIAL 919 285)
(TRIAL 920 283)
(TRIAL 922 275)
(TRIAL 925 267)
(TRIAL 925 268)
(TRIAL 925 269)
(TRIAL 926 281)
(TRIAL 928 269)
(TRIAL 929 269)
(TRIAL 931 267)
(TRIAL 931 268)
(TRIAL 931 269)
(TRIAL 932 273)
(TRIAL 934 269)
(TRIAL 935 269)
(TRIAL 937 266)
(TRIAL 937 281)
(TRIAL 937 285)
(TRIAL 938 285)
(TRIAL 939 283)
(TRIAL 941 267)
(TRIAL 941 268)
(TRIAL 941 269)
(TRIAL 942 281)
(TRIAL 944 269)
(TRIAL 945 269)
(TRIAL 947 268)
(TRIAL 947 269)
(TRIAL 948 281)
(TRIAL 950 274)
(TRIAL 950 281)
(TRIAL 951 281)
(TRIAL 951 285)
(TRIAL 952 285)
(TRIAL 953 283)
(TRIAL 955 276)
(TRIAL 957 268)
(TRIAL 957 269)
(TRIAL 960 267)
(TRIAL 960 268)
(TRIAL 960 269)
(TRIAL 960 281)
(TRIAL 962 281)
(TRIAL 963 276)
(TRIAL 964 269)
(TRIAL 966 269)
(TRIAL 966 281)
(TRIAL 968 269)
(TRIAL 969 269)
(TRIAL 970 268)
(TRIAL 970 269)
(TRIAL 975 225)
(TRIAL 975 229)
(TRIAL 975 265)
(TRIAL 975 269)
(TRIAL 975 285)
(TRIAL 977 269)
(TRIAL 977 273)
(TRIAL 977 285)
(TRIAL 980 267)
(TRIAL 980 269)
(TRIAL 982 267)
(TRIAL 982 269)
(TRIAL 984 266)
(TRIAL 984 285)
(TRIAL 985 274)
(TRIAL 985 285)
(TRIAL 987 268)
(TRIAL 989 267)
(TRIAL 989 269)
(TRIAL 990 269)
(TRIAL 991 268)
(TRIAL 995 228)
(TRIAL 995 265)
(TRIAL 995 269)
(TRIAL 996 269)
(TRIAL 997 267)
(TRIAL 1000 226)
(TRIAL 1000 265)
(TRIAL 1000 269)
(TRIAL 1000 285)
(TRIAL 1002 269)
(TRIAL 1002 273)
(TRIAL 1002 285)
(TRIAL 1005 267)
(TRIAL 1005 269)
(TRIAL 1007 267)
(TRIAL 1007 269)
(TRIAL 1009 266)
(TRIAL 1009 285)
(TRIAL 1010 274)
(TRIAL 1010 285)
(TRIAL 1012 268)
(TRIAL 1014 267)
(TRIAL 1014 269)
(TRIAL 1015 269)
(TRIAL 1016 268)
(TRIAL 1019 228)
(TRIAL 1021 227)
(TRIAL 1021 265)
(TRIAL 1021 269)
(TRIAL 1021 291)
(TRIAL 1023 269)
(TRIAL 1023 273)
(TRIAL 1023 291)
(TRIAL 1026 267)
(TRIAL 1028 228)
(TRIAL 1031 220)
(TRIAL 1031 225)
(TRIAL 1033 218)
(TRIAL 1033 220)
(TRIAL 1034 220)
(TRIAL 1035 219)
(TRIAL 1035 225)
(TRIAL 1037 220)
(TRIAL 1037 225)
(TRIAL 1040 219)
(TRIAL 1040 220)
(TRIAL 1041 229)
(TRIAL 1041 265)
(TRIAL 1041 269)
(TRIAL 1042 266)
(TRIAL 1042 282)
(TRIAL 1043 267)
(TRIAL 1044 274)
(TRIAL 1044 282)
(TRIAL 1047 267)
(TRIAL 1048 269)
(TRIAL 1052 219)
(TRIAL 1052 220)
(TRIAL 1053 225)
(TRIAL 1053 226)
(TRIAL 1056 218)
(TRIAL 1056 226)
(TRIAL 1056 265)
(TRIAL 1056 269)
(TRIAL 1057 269)
(TRIAL 1058 267)
(TRIAL 1061 219)
(TRIAL 1061 226)
(TRIAL 1063 220)
(TRIAL 1063 228)
(TRIAL 1066 219)
(TRIAL 1066 220)
(TRIAL 1066 227)
(TRIAL 1068 229)
(TRIAL 1068 265)
(TRIAL 1068 269)
(TRIAL 1069 269)
(TRIAL 1072 227)
(TRIAL 1072 265)
(TRIAL 1072 269)
(TRIAL 1072 291)
(TRIAL 1074 269)
(TRIAL 1074 273)
(TRIAL 1074 291)
(TRIAL 1078 228)
(TRIAL 1080 220)
(TRIAL 1080 228)
(TRIAL 1084 213)
(TRIAL 1084 217)
(TRIAL 1084 265)
(TRIAL 1084 277)
(TRIAL 1084 281)
(TRIAL 1084 329)
(TRIAL 1084 345)
(TRIAL 1084 347)
(TRIAL 1086 331)
(TRIAL 1086 347)
(TRIAL 1088 331)
(TRIAL 1088 345)
(TRIAL 1091 289)
(TRIAL 1091 329)
(TRIAL 1091 331)
(TRIAL 1093 291)
(TRIAL 1095 283)
(TRIAL 1095 329)
(TRIAL 1095 345)
(TRIAL 1096 331)
(TRIAL 1099 283)
(TRIAL 1099 289)
(TRIAL 1101 282)
(TRIAL 1101 284)
(TRIAL 1103 283)
(TRIAL 1103 329)
(TRIAL 1103 347)
(TRIAL 1105 291)
(TRIAL 1106 284)
(TRIAL 1109 281)
(TRIAL 1109 293)
(TRIAL 1110 289)
(TRIAL 1110 293)
(TRIAL 1112 283)
(TRIAL 1115 266)
(TRIAL 1115 267)
(TRIAL 1115 268)
(TRIAL 1115 277)
(TRIAL 1115 293)
(TRIAL 1117 277)
(TRIAL 1117 284)
(TRIAL 1120 277)
(TRIAL 1120 331)
(TRIAL 1120 347)
(TRIAL 1122 293)
(TRIAL 1124 277)
(TRIAL 1124 283)
(TRIAL 1124 331)
(TRIAL 1127 275)
(TRIAL 1127 277)
(TRIAL 1127 291)
(TRIAL 1130 268)
(TRIAL 1130 277)
(TRIAL 1130 283)
(TRIAL 1133 277)
(TRIAL 1133 283)
(TRIAL 1133 347)
(TRIAL 1134 291)
(TRIAL 1135 284)
(TRIAL 1137 283)
(TRIAL 1140 268)
(TRIAL 1140 277)
(TRIAL 1140 330)
(TRIAL 1140 346)
(TRIAL 1142 293)
(TRIAL 1144 277)
(TRIAL 1144 284)
(TRIAL 1147 268)
(TRIAL 1147 277)
(TRIAL 1147 282)
(TRIAL 1147 330)
(TRIAL 1151 268)
(TRIAL 1151 274)
(TRIAL 1151 277)
(TRIAL 1151 290)
(TRIAL 1155 267)
(TRIAL 1155 268)
(TRIAL 1155 277)
(TRIAL 1155 282)
(TRIAL 1158 277)
(TRIAL 1158 282)
(TRIAL 1160 277)
(TRIAL 1160 282)
(TRIAL 1163 268)
(TRIAL 1163 277)
(TRIAL 1163 282)
(TRIAL 1163 346)
(TRIAL 1164 290)
(TRIAL 1165 283)
(TRIAL 1167 282)
(TRIAL 1169 277)
(TRIAL 1169 282)
(TRIAL 1173 267)
(TRIAL 1173 268)
(TRIAL 1173 277)
(TRIAL 1173 329)
(TRIAL 1173 345)
(TRIAL 1175 293)
(TRIAL 1177 277)
(TRIAL 1177 284)
(TRIAL 1180 277)
(TRIAL 1180 329)
(TRIAL 1180 345)
(TRIAL 1180 347)
(TRIAL 1182 331)
(TRIAL 1182 347)
(TRIAL 1184 331)
(TRIAL 1184 345)
(TRIAL 1187 293)
;BKPT ↑B
(TRIAL 1187 293)
;BKPT ↑B
(TRIAL 1189 277)
(TRIAL 1189 283)
(TRIAL 1189 329)
(TRIAL 1189 345)
(TRIAL 1190 331)
(TRIAL 1194 275)
(TRIAL 1194 277)
(TRIAL 1194 291)
(TRIAL 1197 268)
(TRIAL 1197 277)
(TRIAL 1197 283)
(TRIAL 1200 277)
(TRIAL 1200 283)
(TRIAL 1200 329)
(TRIAL 1200 347)
(TRIAL 1202 291)
(TRIAL 1203 284)
(TRIAL 1205 283)
(TRIAL 1208 273)
(TRIAL 1208 277)
(TRIAL 1208 289)
(TRIAL 1208 337)
(TRIAL 1208 339)
(TRIAL 1210 291)
(TRIAL 1212 289)
(TRIAL 1212 293)
(TRIAL 1215 277)
(TRIAL 1215 281)
(TRIAL 1215 345)
(TRIAL 1215 347)
(TRIAL 1217 289)
(TRIAL 1217 291)
(TRIAL 1219 283)
(TRIAL 1219 345)
(TRIAL 1221 283)
(TRIAL 1221 289)
(TRIAL 1223 282)
(TRIAL 1223 284)
(TRIAL 1225 283)
(TRIAL 1225 347)
(TRIAL 1226 291)
(TRIAL 1227 284)
(TRIAL 1230 281)
(TRIAL 1230 293)
(TRIAL 1231 289)
(TRIAL 1231 293)
(TRIAL 1233 283)
(TRIAL 1236 275)
(TRIAL 1236 277)
(TRIAL 1236 289)
(TRIAL 1236 337)
(TRIAL 1240 275)
(TRIAL 1240 277)
(TRIAL 1240 281)
(TRIAL 1243 274)
(TRIAL 1243 289)
(TRIAL 1243 293)
(TRIAL 1245 282)
(TRIAL 1245 289)
(TRIAL 1246 289)
(TRIAL 1246 293)
(TRIAL 1248 284)
(TRIAL 1250 276)
(TRIAL 1252 275)
(TRIAL 1252 277)
(TRIAL 1252 289)
(TRIAL 1252 339)
(TRIAL 1255 277)
(TRIAL 1255 283)
(TRIAL 1257 276)
(TRIAL 1260 267)
(TRIAL 1260 268)
(TRIAL 1260 277)
(TRIAL 1260 281)
(TRIAL 1260 329)
(TRIAL 1264 277)
(TRIAL 1264 281)
(TRIAL 1264 329)
(TRIAL 1264 347)
(TRIAL 1268 277)
(TRIAL 1268 281)
(TRIAL 1268 329)
(TRIAL 1268 347)
(TRIAL 1270 289)
(TRIAL 1270 329)
(TRIAL 1275 267)
(TRIAL 1275 268)
(TRIAL 1275 273)
(TRIAL 1275 277)
(TRIAL 1275 289)
(TRIAL 1279 273)
(TRIAL 1279 277)
(TRIAL 1279 289)
(TRIAL 1282 273)
(TRIAL 1284 266)
(TRIAL 1284 267)
(TRIAL 1284 268)
(TRIAL 1284 277)
(TRIAL 1284 281)
(TRIAL 1287 277)
(TRIAL 1287 281)
(TRIAL 1289 277)
(TRIAL 1289 281)
(TRIAL 1292 268)
(TRIAL 1292 277)
(TRIAL 1292 281)
(TRIAL 1295 268)
(TRIAL 1295 277)
(TRIAL 1295 281)
(TRIAL 1299 267)
(TRIAL 1299 268)
(TRIAL 1299 277)
(TRIAL 1299 281)
(TRIAL 1299 345)
(TRIAL 1300 289)
(TRIAL 1301 282)
(TRIAL 1303 281)
(TRIAL 1305 277)
(TRIAL 1305 281)
(TRIAL 1308 277)
(TRIAL 1308 281)
(TRIAL 1308 331)
(TRIAL 1308 345)
(TRIAL 1310 289)
(TRIAL 1311 282)
(TRIAL 1313 281)
(TRIAL 1315 277)
(TRIAL 1315 281)
(TRIAL 1315 331)
(TRIAL 1315 345)
(TRIAL 1317 289)
(TRIAL 1317 331)
(TRIAL 1321 275)
(TRIAL 1322 268)
(TRIAL 1322 277)
(TRIAL 1322 281)
(TRIAL 1327 225)
(TRIAL 1327 265)
(TRIAL 1327 277)
(TRIAL 1327 329)
(TRIAL 1327 345)
(TRIAL 1327 347)
(TRIAL 1329 331)
(TRIAL 1329 347)
(TRIAL 1331 331)
(TRIAL 1331 345)
(TRIAL 1334 293)
(TRIAL 1336 273)
(TRIAL 1336 277)
(TRIAL 1336 345)
(TRIAL 1336 347)
(TRIAL 1338 293)
(TRIAL 1340 275)
(TRIAL 1342 267)
(TRIAL 1342 277)
(TRIAL 1342 329)
(TRIAL 1342 347)
(TRIAL 1346 267)
(TRIAL 1346 273)
(TRIAL 1348 266)
(TRIAL 1348 268)
(TRIAL 1350 267)
(TRIAL 1350 277)
(TRIAL 1350 331)
(TRIAL 1350 345)
(TRIAL 1353 275)
(TRIAL 1354 268)
(TRIAL 1357 227)
(TRIAL 1359 219)
(TRIAL 1359 265)
(TRIAL 1359 277)
(TRIAL 1359 281)
(TRIAL 1361 266)
(TRIAL 1361 267)
(TRIAL 1363 267)
(TRIAL 1364 273)
(TRIAL 1364 277)
(TRIAL 1364 281)
(TRIAL 1369 219)
(TRIAL 1369 225)
(TRIAL 1371 218)
(TRIAL 1371 220)
(TRIAL 1373 219)
(TRIAL 1373 265)
(TRIAL 1373 277)
(TRIAL 1373 283)
(TRIAL 1375 273)
(TRIAL 1375 277)
(TRIAL 1375 283)
(TRIAL 1379 227)
(TRIAL 1380 220)
(TRIAL 1383 217)
(TRIAL 1383 221)
(TRIAL 1383 265)
(TRIAL 1383 281)
(TRIAL 1383 301)
(TRIAL 1384 289)
(TRIAL 1384 301)
(TRIAL 1386 283)
(TRIAL 1388 266)
(TRIAL 1388 267)
(TRIAL 1388 268)
(TRIAL 1388 301)
(TRIAL 1390 301)
(TRIAL 1391 283)
(TRIAL 1393 268)
(TRIAL 1393 301)
(TRIAL 1395 268)
(TRIAL 1395 282)
(TRIAL 1398 267)
(TRIAL 1398 268)
(TRIAL 1398 301)
(TRIAL 1400 301)
(TRIAL 1401 283)
(TRIAL 1403 273)
(TRIAL 1403 289)
(TRIAL 1403 301)
(TRIAL 1405 281)
(TRIAL 1405 301)
(TRIAL 1406 289)
(TRIAL 1406 301)
(TRIAL 1408 283)
(TRIAL 1410 275)
(TRIAL 1412 267)
(TRIAL 1412 268)
(TRIAL 1412 281)
(TRIAL 1414 281)
(TRIAL 1418 221)
(TRIAL 1418 225)
(TRIAL 1418 265)
(TRIAL 1418 301)
(TRIAL 1419 273)
(TRIAL 1419 301)
(TRIAL 1421 267)
(TRIAL 1425 219)
(TRIAL 1425 221)
(TRIAL 1427 219)
(TRIAL 1427 221)
(TRIAL 1429 218)
(TRIAL 1429 265)
(TRIAL 1429 282)
(TRIAL 1429 301)
(TRIAL 1430 290)
(TRIAL 1430 301)
(TRIAL 1432 284)
(TRIAL 1434 273)
(TRIAL 1434 282)
(TRIAL 1434 301)
(TRIAL 1435 290)
(TRIAL 1435 301)
(TRIAL 1437 284)
(TRIAL 1440 267)
(TRIAL 1440 268)
(TRIAL 1440 282)
(TRIAL 1442 282)
(TRIAL 1445 226)
(TRIAL 1445 265)
(TRIAL 1445 301)
(TRIAL 1446 273)
(TRIAL 1446 301)
(TRIAL 1448 267)
(TRIAL 1451 220)
(TRIAL 1453 219)
(TRIAL 1453 221)
(TRIAL 1454 221)
(TRIAL 1455 220)
(TRIAL 1458 217)
(TRIAL 1458 229)
(TRIAL 1458 265)
(TRIAL 1458 281)
(TRIAL 1458 301)
(TRIAL 1459 289)
(TRIAL 1459 301)
(TRIAL 1461 283)
(TRIAL 1463 266)
(TRIAL 1463 267)
(TRIAL 1463 268)
(TRIAL 1463 301)
(TRIAL 1465 301)
(TRIAL 1466 283)
(TRIAL 1468 268)
(TRIAL 1468 301)
(TRIAL 1470 268)
(TRIAL 1470 282)
(TRIAL 1473 267)
(TRIAL 1473 268)
(TRIAL 1473 301)
(TRIAL 1475 301)
(TRIAL 1476 283)
(TRIAL 1478 273)
(TRIAL 1478 289)
(TRIAL 1478 301)
(TRIAL 1480 281)
(TRIAL 1480 301)
(TRIAL 1481 289)
(TRIAL 1481 301)
(TRIAL 1483 283)
(TRIAL 1485 275)
(TRIAL 1487 267)
(TRIAL 1487 268)
(TRIAL 1487 281)
(TRIAL 1489 281)
(TRIAL 1493 225)
(TRIAL 1493 229)
(TRIAL 1493 265)
(TRIAL 1493 301)
(TRIAL 1494 273)
(TRIAL 1494 301)
(TRIAL 1496 267)
(TRIAL 1499 228)
(TRIAL 1500 226)
(TRIAL 1500 265)
(TRIAL 1500 301)
(TRIAL 1501 273)
(TRIAL 1501 301)
(TRIAL 1503 267)
(TRIAL 1507 220)
(TRIAL 1508 218)
(TRIAL 1508 220)
(TRIAL 1510 219)
(TRIAL 1510 220)
(TRIAL 1514 217)
(TRIAL 1514 221)
(TRIAL 1514 229)
(TRIAL 1514 265)
(TRIAL 1514 281)
(TRIAL 1514 301)
(TRIAL 1515 289)
(TRIAL 1515 301)
(TRIAL 1517 283)
(TRIAL 1519 266)
(TRIAL 1519 267)
(TRIAL 1519 268)
(TRIAL 1519 301)
(TRIAL 1521 301)
(TRIAL 1522 283)
(TRIAL 1524 268)
(TRIAL 1524 301)
(TRIAL 1526 268)
(TRIAL 1526 282)
(TRIAL 1529 267)
(TRIAL 1529 268)
(TRIAL 1529 301)
(TRIAL 1531 301)
(TRIAL 1532 283)
(TRIAL 1534 273)
(TRIAL 1534 289)
(TRIAL 1534 301)
(TRIAL 1536 281)
(TRIAL 1536 301)
(TRIAL 1537 289)
(TRIAL 1537 301)
(TRIAL 1539 283)
(TRIAL 1541 275)
(TRIAL 1543 267)
(TRIAL 1543 268)
(TRIAL 1543 281)
(TRIAL 1545 281)
(TRIAL 1550 221)
(TRIAL 1550 225)
(TRIAL 1550 229)
(TRIAL 1550 265)
(TRIAL 1550 301)
(TRIAL 1551 273)
(TRIAL 1551 301)
(TRIAL 1553 267)
(TRIAL 1556 228)
(TRIAL 1557 226)
(TRIAL 1557 265)
(TRIAL 1557 301)
(TRIAL 1558 273)
(TRIAL 1558 301)
(TRIAL 1560 267)
(TRIAL 1565 220)
(TRIAL 1565 221)
(TRIAL 1566 225)
(TRIAL 1566 265)
(TRIAL 1566 281)
(TRIAL 1567 266)
(TRIAL 1567 267)
(TRIAL 1567 268)
(TRIAL 1569 268)
(TRIAL 1571 267)
(TRIAL 1571 268)
(TRIAL 1573 273)
(TRIAL 1573 281)
(TRIAL 1576 226)
(TRIAL 1579 218)
(TRIAL 1579 225)
(TRIAL 1579 265)
(TRIAL 1579 282)
(TRIAL 1579 301)
(TRIAL 1580 290)
(TRIAL 1580 301)
(TRIAL 1582 284)
(TRIAL 1584 273)
(TRIAL 1584 282)
(TRIAL 1584 301)
(TRIAL 1585 290)
(TRIAL 1585 301)
(TRIAL 1587 284)
(TRIAL 1590 267)
(TRIAL 1590 268)
(TRIAL 1590 282)
(TRIAL 1592 282)
(TRIAL 1596 225)
(TRIAL 1596 229)
(TRIAL 1596 265)
(TRIAL 1596 301)
(TRIAL 1597 273)
(TRIAL 1597 301)
(TRIAL 1599 267)
(TRIAL 1602 228)
(TRIAL 1603 226)
(TRIAL 1603 265)
(TRIAL 1603 301)
(TRIAL 1604 273)
(TRIAL 1604 301)
(TRIAL 1606 267)
(TRIAL 1610 221)
(TRIAL 1611 219)
(TRIAL 1611 221)
(TRIAL 1613 220)
(TRIAL 1613 221)
(TRIAL 1616 219)
(TRIAL 1616 227)
(TRIAL 1616 265)
(TRIAL 1616 283)
(TRIAL 1617 273)
(TRIAL 1617 283)
(TRIAL 1620 228)
(TRIAL 1622 220)
(TRIAL 1622 221)
(TRIAL 1627 202)
(TRIAL 1627 218)
(TRIAL 1627 266)
(TRIAL 1627 282)
(TRIAL 1627 301)
(TRIAL 1628 290)
(TRIAL 1628 301)
(TRIAL 1629 293)
(TRIAL 1629 329)
(TRIAL 1629 333)
(TRIAL 1630 332)
(TRIAL 1631 330)
(TRIAL 1631 353)
(TRIAL 1635 292)
(TRIAL 1637 285)
(TRIAL 1637 290)
(TRIAL 1637 292)
(TRIAL 1639 290)
(TRIAL 1639 301)
(TRIAL 1642 284)
(TRIAL 1642 301)
(TRIAL 1644 284)
(TRIAL 1644 290)
(TRIAL 1646 283)
(TRIAL 1646 291)
(TRIAL 1646 301)
(TRIAL 1648 285)
(TRIAL 1648 329)
(TRIAL 1648 333)
(TRIAL 1648 345)
(TRIAL 1650 332)
(TRIAL 1651 330)
(TRIAL 1651 349)
(TRIAL 1656 284)
(TRIAL 1656 301)
(TRIAL 1657 292)
(TRIAL 1658 285)
(TRIAL 1658 329)
(TRIAL 1658 333)
(TRIAL 1658 345)
(TRIAL 1660 332)
(TRIAL 1661 330)
(TRIAL 1661 349)
(TRIAL 1667 267)
(TRIAL 1667 268)
(TRIAL 1667 269)
(TRIAL 1667 293)
(TRIAL 1667 329)
(TRIAL 1667 333)
(TRIAL 1670 285)
(TRIAL 1670 329)
(TRIAL 1670 349)
(TRIAL 1674 301)
(TRIAL 1675 269)
(TRIAL 1675 292)
(TRIAL 1676 292)
(TRIAL 1676 301)
(TRIAL 1678 285)
(TRIAL 1678 292)
(TRIAL 1681 284)
(TRIAL 1681 301)
(TRIAL 1683 276)
(TRIAL 1683 277)
(TRIAL 1683 329)
(TRIAL 1683 340)
(TRIAL 1685 301)
(TRIAL 1687 292)
(TRIAL 1689 269)
(TRIAL 1689 284)
(TRIAL 1690 284)
(TRIAL 1692 284)
(TRIAL 1692 301)
(TRIAL 1693 292)
(TRIAL 1694 285)
(TRIAL 1694 329)
(TRIAL 1694 349)
(TRIAL 1699 269)
(TRIAL 1699 301)
(TRIAL 1700 293)
(TRIAL 1700 329)
(TRIAL 1700 331)
(TRIAL 1700 333)
(TRIAL 1704 285)
(TRIAL 1704 329)
(TRIAL 1704 331)
(TRIAL 1704 349)
(TRIAL 1709 275)
(TRIAL 1709 283)
(TRIAL 1709 285)
(TRIAL 1710 285)
(TRIAL 1711 284)
(TRIAL 1711 301)
(TRIAL 1713 285)
(TRIAL 1713 301)
(TRIAL 1716 276)
(TRIAL 1716 292)
(TRIAL 1717 284)
(TRIAL 1717 301)
(TRIAL 1719 277)
(TRIAL 1719 292)
(TRIAL 1721 292)
(TRIAL 1721 301)
(TRIAL 1724 277)
(TRIAL 1724 291)
(TRIAL 1725 291)
(TRIAL 1727 277)
(TRIAL 1727 283)
(TRIAL 1727 329)
(TRIAL 1727 331)
(TRIAL 1730 283)
(TRIAL 1730 301)
(TRIAL 1733 276)
(TRIAL 1733 277)
(TRIAL 1733 291)
(TRIAL 1735 291)
(TRIAL 1735 301)
(TRIAL 1738 277)
(TRIAL 1738 291)
(TRIAL 1738 329)
(TRIAL 1738 331)
(TRIAL 1741 291)
(TRIAL 1741 301)
(TRIAL 1743 291)
(TRIAL 1743 301)
(TRIAL 1747 268)
(TRIAL 1747 269)
(TRIAL 1747 291)
(TRIAL 1748 291)
(TRIAL 1749 285)
(TRIAL 1749 291)
(TRIAL 1752 291)
(TRIAL 1753 269)
(TRIAL 1753 291)
(TRIAL 1753 301)
(TRIAL 1755 285)
(TRIAL 1757 284)
(TRIAL 1757 291)
(TRIAL 1759 276)
(TRIAL 1759 277)
(TRIAL 1759 291)
(TRIAL 1761 291)
(TRIAL 1761 301)
(TRIAL 1764 269)
(TRIAL 1764 284)
(TRIAL 1765 284)
(TRIAL 1767 284)
(TRIAL 1767 291)
(TRIAL 1768 291)
(TRIAL 1768 301)
(TRIAL 1770 285)
(TRIAL 1770 291)
(TRIAL 1774 269)
(TRIAL 1774 283)
(TRIAL 1774 301)
(TRIAL 1776 283)
(TRIAL 1776 293)
(TRIAL 1779 269)
(TRIAL 1779 275)
(TRIAL 1779 276)
(TRIAL 1779 301)
(TRIAL 1781 291)
(TRIAL 1783 275)
(TRIAL 1783 276)
(TRIAL 1784 291)
(TRIAL 1784 301)
(TRIAL 1788 268)
(TRIAL 1788 269)
(TRIAL 1788 283)
(TRIAL 1789 283)
(TRIAL 1791 283)
(TRIAL 1792 269)
(TRIAL 1792 283)
(TRIAL 1793 283)
(TRIAL 1795 283)
(TRIAL 1795 291)
(TRIAL 1795 301)
(TRIAL 1799 269)
(TRIAL 1799 283)
(TRIAL 1799 301)
(TRIAL 1800 291)
(TRIAL 1801 284)
(TRIAL 1803 283)
(TRIAL 1803 293)
(TRIAL 1804 291)
(TRIAL 1804 301)
(TRIAL 1806 284)
(TRIAL 1808 283)
(TRIAL 1808 291)
(TRIAL 1808 301)
(TRIAL 1813 268)
(TRIAL 1813 269)
(TRIAL 1813 301)
(TRIAL 1814 293)
(TRIAL 1814 329)
(TRIAL 1814 331)
(TRIAL 1814 333)
(TRIAL 1816 333)
(TRIAL 1817 330)
(TRIAL 1817 333)
(TRIAL 1821 285)
(TRIAL 1821 329)
(TRIAL 1821 331)
(TRIAL 1821 349)
(TRIAL 1823 337)
(TRIAL 1823 339)
(TRIAL 1825 330)
(TRIAL 1825 349)
(TRIAL 1830 301)
(TRIAL 1831 269)
(TRIAL 1831 292)
(TRIAL 1832 292)
(TRIAL 1832 301)
(TRIAL 1834 285)
(TRIAL 1834 292)
(TRIAL 1837 284)
(TRIAL 1837 301)
(TRIAL 1839 276)
(TRIAL 1839 277)
(TRIAL 1839 329)
(TRIAL 1839 331)
(TRIAL 1839 340)
(TRIAL 1841 337)
(TRIAL 1841 353)
(TRIAL 1842 339)
(TRIAL 1844 330)
(TRIAL 1844 340)
(TRIAL 1847 301)
(TRIAL 1849 292)
(TRIAL 1851 269)
(TRIAL 1851 284)
(TRIAL 1852 284)
(TRIAL 1854 284)
(TRIAL 1854 301)
(TRIAL 1855 292)
(TRIAL 1856 285)
(TRIAL 1856 329)
(TRIAL 1856 331)
(TRIAL 1856 349)
(TRIAL 1858 337)
(TRIAL 1858 339)
(TRIAL 1860 330)
(TRIAL 1860 349)
(TRIAL 1866 274)
(TRIAL 1866 290)
(TRIAL 1866 301)
(TRIAL 1867 293)
(TRIAL 1867 329)
(TRIAL 1867 338)
(TRIAL 1867 353)
(TRIAL 1868 340)
(TRIAL 1872 292)
(TRIAL 1874 282)
(TRIAL 1874 301)
(TRIAL 1875 290)
(TRIAL 1875 293)
(TRIAL 1875 329)
(TRIAL 1875 353)
(TRIAL 1878 292)
(TRIAL 1880 285)
(TRIAL 1880 290)
(TRIAL 1880 292)
(TRIAL 1882 290)
(TRIAL 1882 301)
(TRIAL 1885 284)
(TRIAL 1885 301)
(TRIAL 1887 284)
(TRIAL 1887 290)
(TRIAL 1889 283)
(TRIAL 1889 291)
(TRIAL 1889 301)
(TRIAL 1891 285)
(TRIAL 1891 329)
(TRIAL 1891 349)
(TRIAL 1895 284)
(TRIAL 1895 301)
(TRIAL 1896 292)
(TRIAL 1897 285)
(TRIAL 1897 329)
(TRIAL 1897 349)
(TRIAL 1902 277)
(TRIAL 1902 282)
(TRIAL 1902 290)
(TRIAL 1902 292)
(TRIAL 1904 284)
(TRIAL 1905 284)
(TRIAL 1906 283)
(TRIAL 1906 329)
(TRIAL 1906 338)
(TRIAL 1909 284)
(TRIAL 1909 329)
(TRIAL 1909 338)
(TRIAL 1913 282)
(TRIAL 1913 284)
(TRIAL 1914 284)
(TRIAL 1915 283)
(TRIAL 1915 301)
(TRIAL 1917 284)
(TRIAL 1917 301)
(TRIAL 1920 282)
(TRIAL 1920 290)
(TRIAL 1920 301)
(TRIAL 1922 284)
(TRIAL 1925 275)
(TRIAL 1925 283)
(TRIAL 1925 285)
(TRIAL 1926 285)
(TRIAL 1927 284)
(TRIAL 1927 301)
(TRIAL 1929 285)
(TRIAL 1929 301)
(TRIAL 1932 276)
(TRIAL 1932 292)
(TRIAL 1933 284)
(TRIAL 1933 301)
(TRIAL 1935 277)
(TRIAL 1935 292)
(TRIAL 1937 292)
(TRIAL 1937 301)
(TRIAL 1940 277)
(TRIAL 1940 291)
(TRIAL 1941 291)
(TRIAL 1943 277)
(TRIAL 1943 283)
(TRIAL 1943 329)
(TRIAL 1943 338)
(TRIAL 1946 283)
(TRIAL 1946 301)
(TRIAL 1949 276)
(TRIAL 1949 277)
(TRIAL 1949 291)
(TRIAL 1951 291)
(TRIAL 1951 301)
(TRIAL 1954 277)
(TRIAL 1954 291)
(TRIAL 1954 329)
(TRIAL 1954 338)
(TRIAL 1957 291)
(TRIAL 1957 301)
(TRIAL 1959 291)
(TRIAL 1959 301)
(TRIAL 1963 276)
(TRIAL 1963 277)
(TRIAL 1963 290)
(TRIAL 1964 290)
(TRIAL 1966 290)
(TRIAL 1966 301)
(TRIAL 1967 293)
(TRIAL 1970 276)
(TRIAL 1970 277)
(TRIAL 1970 282)
(TRIAL 1970 329)
(TRIAL 1970 340)
(TRIAL 1973 282)
(TRIAL 1973 301)
(TRIAL 1976 282)
(TRIAL 1978 275)
(TRIAL 1978 283)
(TRIAL 1978 290)
(TRIAL 1978 301)
(TRIAL 1980 285)
(TRIAL 1980 290)
(TRIAL 1983 276)
(TRIAL 1983 277)
(TRIAL 1983 290)
(TRIAL 1985 290)
(TRIAL 1987 277)
(TRIAL 1987 290)
(TRIAL 1987 329)
(TRIAL 1987 353)
Puzzle filled
(TRIAL 1987 0)
Piece 1 at 1
Piece 8 at 354
Piece 7 at 330
Piece 3 at 291
Piece 13 at 278
Piece 12 at 276
Piece 5 at 275
Piece 1 at 267
Piece 1 at 219
Piece 3 at 203
Piece 1 at 202
Piece 1 at 154
Piece 9 at 138
Piece 2 at 110
Piece 2 at 108
Piece 1 at 106
Piece 3 at 90
success in 2005 trials
NIL
;;; Here are the ones I've done so far:
(defun tak (x y z)
(catch 'tak (tak1 x y z)))
(defun tak1 (x y z)
(cond ((not (ilessp y x))
(throw 'tak z))
(t (tak1
(catch 'tak
(tak1 (isub1 x)
y
z))
(catch 'tak
(tak1 (isub1 y)
z
x))
(catch 'tak
(tak1 (isub1 z)
x
y))))))
(defun timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)))
;;; **************************************************
(defvar x)(defvar y)(defvar z)
(defun tak (x y z)
(stak))
(defun stak ()
(cond ((not (ilessp y x))
z)
(t (let ((x (let ((x (isub1 x))
(y y)
(z z))
(stak)))
(y (let ((x (isub1 y))
(y z)
(z x))
(stak)))
(z (let ((x (isub1 z))
(y x)
(z y))
(stak))))
(stak)))))
(defun timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)))
;;; **************************************************
(eval-when (compile) (localf tak))
(de tak (x y z)
(cond ((not (ilessp y x)) ;x≤y
z)
(t (tak (tak (isub1 x) y z)
(tak (isub1 y) z x)
(tak (isub1 z) x y)))))
(de timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)))
;;; **************************************************
(eval-when (compile) (localf tak))
(de tak (x y z)
(cond ((not (ilessp y x)) ;x≤y
z)
(t (tak (tak (isub1 x) y z)
(tak (isub1 y) z x)
(tak (isub1 z) x y)))))
(de timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)))
;;; **************************************************
(defun listn (n)
(cond
((izerop n)
nil)
(t (cons n (listn (isub1 n))))))
(defun mas (x y z)
(cond
((not (shorterp y x))
z)
(t (mas (mas (cdr x)
y z)
(mas (cdr y)
z x)
(mas (cdr z)
x y)))))
(defun shorterp (x y)
(and y (or (null x)
(shorterp (cdr x)
(cdr y)))))
(setq 18l (listn 18)
12l (listn 12)
6l (listn 6))
(defun timit () (mas 18l 12l 6l))
;;; **************************************************
(DEFUN TAK0 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK1 (TAK37 (isub1 X) Y Z)
(TAK11 (isub1 Y) Z X)
(TAK17 (isub1 Z) X Y)))))
(DEFUN TAK1 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK2 (TAK74 (isub1 X) Y Z)
(TAK22 (isub1 Y) Z X)
(TAK34 (isub1 Z) X Y)))))
(DEFUN TAK2 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK3 (TAK11 (isub1 X) Y Z)
(TAK33 (isub1 Y) Z X)
(TAK51 (isub1 Z) X Y)))))
(DEFUN TAK3 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK4 (TAK48 (isub1 X) Y Z)
(TAK44 (isub1 Y) Z X)
(TAK68 (isub1 Z) X Y)))))
(DEFUN TAK4 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK5 (TAK85 (isub1 X) Y Z)
(TAK55 (isub1 Y) Z X)
(TAK85 (isub1 Z) X Y)))))
(DEFUN TAK5 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK6 (TAK22 (isub1 X) Y Z)
(TAK66 (isub1 Y) Z X)
(TAK2 (isub1 Z) X Y)))))
(DEFUN TAK6 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK7 (TAK59 (isub1 X) Y Z)
(TAK77 (isub1 Y) Z X)
(TAK19 (isub1 Z) X Y)))))
(DEFUN TAK7 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK8 (TAK96 (isub1 X) Y Z)
(TAK88 (isub1 Y) Z X)
(TAK36 (isub1 Z) X Y)))))
(DEFUN TAK8 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK9 (TAK33 (isub1 X) Y Z)
(TAK99 (isub1 Y) Z X)
(TAK53 (isub1 Z) X Y)))))
(DEFUN TAK9 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK10 (TAK70 (isub1 X) Y Z)
(TAK10 (isub1 Y) Z X)
(TAK70 (isub1 Z) X Y)))))
(DEFUN TAK10 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK11 (TAK7 (isub1 X) Y Z)
(TAK21 (isub1 Y) Z X)
(TAK87 (isub1 Z) X Y)))))
(DEFUN TAK11 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK12 (TAK44 (isub1 X) Y Z)
(TAK32 (isub1 Y) Z X)
(TAK4 (isub1 Z) X Y)))))
(DEFUN TAK12 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK13 (TAK81 (isub1 X) Y Z)
(TAK43 (isub1 Y) Z X)
(TAK21 (isub1 Z) X Y)))))
(DEFUN TAK13 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK14 (TAK18 (isub1 X) Y Z)
(TAK54 (isub1 Y) Z X)
(TAK38 (isub1 Z) X Y)))))
(DEFUN TAK14 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK15 (TAK55 (isub1 X) Y Z)
(TAK65 (isub1 Y) Z X)
(TAK55 (isub1 Z) X Y)))))
(DEFUN TAK15 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK16 (TAK92 (isub1 X) Y Z)
(TAK76 (isub1 Y) Z X)
(TAK72 (isub1 Z) X Y)))))
(DEFUN TAK16 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK17 (TAK29 (isub1 X) Y Z)
(TAK87 (isub1 Y) Z X)
(TAK89 (isub1 Z) X Y)))))
(DEFUN TAK17 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK18 (TAK66 (isub1 X) Y Z)
(TAK98 (isub1 Y) Z X)
(TAK6 (isub1 Z) X Y)))))
(DEFUN TAK18 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK19 (TAK3 (isub1 X) Y Z)
(TAK9 (isub1 Y) Z X)
(TAK23 (isub1 Z) X Y)))))
(DEFUN TAK19 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK20 (TAK40 (isub1 X) Y Z)
(TAK20 (isub1 Y) Z X)
(TAK40 (isub1 Z) X Y)))))
(DEFUN TAK20 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK21 (TAK77 (isub1 X) Y Z)
(TAK31 (isub1 Y) Z X)
(TAK57 (isub1 Z) X Y)))))
(DEFUN TAK21 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK22 (TAK14 (isub1 X) Y Z)
(TAK42 (isub1 Y) Z X)
(TAK74 (isub1 Z) X Y)))))
(DEFUN TAK22 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK23 (TAK51 (isub1 X) Y Z)
(TAK53 (isub1 Y) Z X)
(TAK91 (isub1 Z) X Y)))))
(DEFUN TAK23 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK24 (TAK88 (isub1 X) Y Z)
(TAK64 (isub1 Y) Z X)
(TAK8 (isub1 Z) X Y)))))
(DEFUN TAK24 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK25 (TAK25 (isub1 X) Y Z)
(TAK75 (isub1 Y) Z X)
(TAK25 (isub1 Z) X Y)))))
(DEFUN TAK25 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK26 (TAK62 (isub1 X) Y Z)
(TAK86 (isub1 Y) Z X)
(TAK42 (isub1 Z) X Y)))))
(DEFUN TAK26 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK27 (TAK99 (isub1 X) Y Z)
(TAK97 (isub1 Y) Z X)
(TAK59 (isub1 Z) X Y)))))
(DEFUN TAK27 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK28 (TAK36 (isub1 X) Y Z)
(TAK8 (isub1 Y) Z X)
(TAK76 (isub1 Z) X Y)))))
(DEFUN TAK28 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK29 (TAK73 (isub1 X) Y Z)
(TAK19 (isub1 Y) Z X)
(TAK93 (isub1 Z) X Y)))))
(DEFUN TAK29 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK30 (TAK10 (isub1 X) Y Z)
(TAK30 (isub1 Y) Z X)
(TAK10 (isub1 Z) X Y)))))
(DEFUN TAK30 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK31 (TAK47 (isub1 X) Y Z)
(TAK41 (isub1 Y) Z X)
(TAK27 (isub1 Z) X Y)))))
(DEFUN TAK31 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK32 (TAK84 (isub1 X) Y Z)
(TAK52 (isub1 Y) Z X)
(TAK44 (isub1 Z) X Y)))))
(DEFUN TAK32 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK33 (TAK21 (isub1 X) Y Z)
(TAK63 (isub1 Y) Z X)
(TAK61 (isub1 Z) X Y)))))
(DEFUN TAK33 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK34 (TAK58 (isub1 X) Y Z)
(TAK74 (isub1 Y) Z X)
(TAK78 (isub1 Z) X Y)))))
(DEFUN TAK34 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK35 (TAK95 (isub1 X) Y Z)
(TAK85 (isub1 Y) Z X)
(TAK95 (isub1 Z) X Y)))))
(DEFUN TAK35 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK36 (TAK32 (isub1 X) Y Z)
(TAK96 (isub1 Y) Z X)
(TAK12 (isub1 Z) X Y)))))
(DEFUN TAK36 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK37 (TAK69 (isub1 X) Y Z)
(TAK7 (isub1 Y) Z X)
(TAK29 (isub1 Z) X Y)))))
(DEFUN TAK37 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK38 (TAK6 (isub1 X) Y Z)
(TAK18 (isub1 Y) Z X)
(TAK46 (isub1 Z) X Y)))))
(DEFUN TAK38 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK39 (TAK43 (isub1 X) Y Z)
(TAK29 (isub1 Y) Z X)
(TAK63 (isub1 Z) X Y)))))
(DEFUN TAK39 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK40 (TAK80 (isub1 X) Y Z)
(TAK40 (isub1 Y) Z X)
(TAK80 (isub1 Z) X Y)))))
(DEFUN TAK40 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK41 (TAK17 (isub1 X) Y Z)
(TAK51 (isub1 Y) Z X)
(TAK97 (isub1 Z) X Y)))))
(DEFUN TAK41 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK42 (TAK54 (isub1 X) Y Z)
(TAK62 (isub1 Y) Z X)
(TAK14 (isub1 Z) X Y)))))
(DEFUN TAK42 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK43 (TAK91 (isub1 X) Y Z)
(TAK73 (isub1 Y) Z X)
(TAK31 (isub1 Z) X Y)))))
(DEFUN TAK43 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK44 (TAK28 (isub1 X) Y Z)
(TAK84 (isub1 Y) Z X)
(TAK48 (isub1 Z) X Y)))))
(DEFUN TAK44 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK45 (TAK65 (isub1 X) Y Z)
(TAK95 (isub1 Y) Z X)
(TAK65 (isub1 Z) X Y)))))
(DEFUN TAK45 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK46 (TAK2 (isub1 X) Y Z)
(TAK6 (isub1 Y) Z X)
(TAK82 (isub1 Z) X Y)))))
(DEFUN TAK46 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK47 (TAK39 (isub1 X) Y Z)
(TAK17 (isub1 Y) Z X)
(TAK99 (isub1 Z) X Y)))))
(DEFUN TAK47 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK48 (TAK76 (isub1 X) Y Z)
(TAK28 (isub1 Y) Z X)
(TAK16 (isub1 Z) X Y)))))
(DEFUN TAK48 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK49 (TAK13 (isub1 X) Y Z)
(TAK39 (isub1 Y) Z X)
(TAK33 (isub1 Z) X Y)))))
(DEFUN TAK49 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK50 (TAK50 (isub1 X) Y Z)
(TAK50 (isub1 Y) Z X)
(TAK50 (isub1 Z) X Y)))))
(DEFUN TAK50 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK51 (TAK87 (isub1 X) Y Z)
(TAK61 (isub1 Y) Z X)
(TAK67 (isub1 Z) X Y)))))
(DEFUN TAK51 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK52 (TAK24 (isub1 X) Y Z)
(TAK72 (isub1 Y) Z X)
(TAK84 (isub1 Z) X Y)))))
(DEFUN TAK52 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK53 (TAK61 (isub1 X) Y Z)
(TAK83 (isub1 Y) Z X)
(TAK1 (isub1 Z) X Y)))))
(DEFUN TAK53 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK54 (TAK98 (isub1 X) Y Z)
(TAK94 (isub1 Y) Z X)
(TAK18 (isub1 Z) X Y)))))
(DEFUN TAK54 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK55 (TAK35 (isub1 X) Y Z)
(TAK5 (isub1 Y) Z X)
(TAK35 (isub1 Z) X Y)))))
(DEFUN TAK55 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK56 (TAK72 (isub1 X) Y Z)
(TAK16 (isub1 Y) Z X)
(TAK52 (isub1 Z) X Y)))))
(DEFUN TAK56 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK57 (TAK9 (isub1 X) Y Z)
(TAK27 (isub1 Y) Z X)
(TAK69 (isub1 Z) X Y)))))
(DEFUN TAK57 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK58 (TAK46 (isub1 X) Y Z)
(TAK38 (isub1 Y) Z X)
(TAK86 (isub1 Z) X Y)))))
(DEFUN TAK58 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK59 (TAK83 (isub1 X) Y Z)
(TAK49 (isub1 Y) Z X)
(TAK3 (isub1 Z) X Y)))))
(DEFUN TAK59 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK60 (TAK20 (isub1 X) Y Z)
(TAK60 (isub1 Y) Z X)
(TAK20 (isub1 Z) X Y)))))
(DEFUN TAK60 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK61 (TAK57 (isub1 X) Y Z)
(TAK71 (isub1 Y) Z X)
(TAK37 (isub1 Z) X Y)))))
(DEFUN TAK61 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK62 (TAK94 (isub1 X) Y Z)
(TAK82 (isub1 Y) Z X)
(TAK54 (isub1 Z) X Y)))))
(DEFUN TAK62 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK63 (TAK31 (isub1 X) Y Z)
(TAK93 (isub1 Y) Z X)
(TAK71 (isub1 Z) X Y)))))
(DEFUN TAK63 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK64 (TAK68 (isub1 X) Y Z)
(TAK4 (isub1 Y) Z X)
(TAK88 (isub1 Z) X Y)))))
(DEFUN TAK64 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK65 (TAK5 (isub1 X) Y Z)
(TAK15 (isub1 Y) Z X)
(TAK5 (isub1 Z) X Y)))))
(DEFUN TAK65 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK66 (TAK42 (isub1 X) Y Z)
(TAK26 (isub1 Y) Z X)
(TAK22 (isub1 Z) X Y)))))
(DEFUN TAK66 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK67 (TAK79 (isub1 X) Y Z)
(TAK37 (isub1 Y) Z X)
(TAK39 (isub1 Z) X Y)))))
(DEFUN TAK67 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK68 (TAK16 (isub1 X) Y Z)
(TAK48 (isub1 Y) Z X)
(TAK56 (isub1 Z) X Y)))))
(DEFUN TAK68 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK69 (TAK53 (isub1 X) Y Z)
(TAK59 (isub1 Y) Z X)
(TAK73 (isub1 Z) X Y)))))
(DEFUN TAK69 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK70 (TAK90 (isub1 X) Y Z)
(TAK70 (isub1 Y) Z X)
(TAK90 (isub1 Z) X Y)))))
(DEFUN TAK70 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK71 (TAK27 (isub1 X) Y Z)
(TAK81 (isub1 Y) Z X)
(TAK7 (isub1 Z) X Y)))))
(DEFUN TAK71 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK72 (TAK64 (isub1 X) Y Z)
(TAK92 (isub1 Y) Z X)
(TAK24 (isub1 Z) X Y)))))
(DEFUN TAK72 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK73 (TAK1 (isub1 X) Y Z)
(TAK3 (isub1 Y) Z X)
(TAK41 (isub1 Z) X Y)))))
(DEFUN TAK73 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK74 (TAK38 (isub1 X) Y Z)
(TAK14 (isub1 Y) Z X)
(TAK58 (isub1 Z) X Y)))))
(DEFUN TAK74 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK75 (TAK75 (isub1 X) Y Z)
(TAK25 (isub1 Y) Z X)
(TAK75 (isub1 Z) X Y)))))
(DEFUN TAK75 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK76 (TAK12 (isub1 X) Y Z)
(TAK36 (isub1 Y) Z X)
(TAK92 (isub1 Z) X Y)))))
(DEFUN TAK76 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK77 (TAK49 (isub1 X) Y Z)
(TAK47 (isub1 Y) Z X)
(TAK9 (isub1 Z) X Y)))))
(DEFUN TAK77 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK78 (TAK86 (isub1 X) Y Z)
(TAK58 (isub1 Y) Z X)
(TAK26 (isub1 Z) X Y)))))
(DEFUN TAK78 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK79 (TAK23 (isub1 X) Y Z)
(TAK69 (isub1 Y) Z X)
(TAK43 (isub1 Z) X Y)))))
(DEFUN TAK79 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK80 (TAK60 (isub1 X) Y Z)
(TAK80 (isub1 Y) Z X)
(TAK60 (isub1 Z) X Y)))))
(DEFUN TAK80 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK81 (TAK97 (isub1 X) Y Z)
(TAK91 (isub1 Y) Z X)
(TAK77 (isub1 Z) X Y)))))
(DEFUN TAK81 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK82 (TAK34 (isub1 X) Y Z)
(TAK2 (isub1 Y) Z X)
(TAK94 (isub1 Z) X Y)))))
(DEFUN TAK82 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK83 (TAK71 (isub1 X) Y Z)
(TAK13 (isub1 Y) Z X)
(TAK11 (isub1 Z) X Y)))))
(DEFUN TAK83 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK84 (TAK8 (isub1 X) Y Z)
(TAK24 (isub1 Y) Z X)
(TAK28 (isub1 Z) X Y)))))
(DEFUN TAK84 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK85 (TAK45 (isub1 X) Y Z)
(TAK35 (isub1 Y) Z X)
(TAK45 (isub1 Z) X Y)))))
(DEFUN TAK85 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK86 (TAK82 (isub1 X) Y Z)
(TAK46 (isub1 Y) Z X)
(TAK62 (isub1 Z) X Y)))))
(DEFUN TAK86 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK87 (TAK19 (isub1 X) Y Z)
(TAK57 (isub1 Y) Z X)
(TAK79 (isub1 Z) X Y)))))
(DEFUN TAK87 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK88 (TAK56 (isub1 X) Y Z)
(TAK68 (isub1 Y) Z X)
(TAK96 (isub1 Z) X Y)))))
(DEFUN TAK88 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK89 (TAK93 (isub1 X) Y Z)
(TAK79 (isub1 Y) Z X)
(TAK13 (isub1 Z) X Y)))))
(DEFUN TAK89 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK90 (TAK30 (isub1 X) Y Z)
(TAK90 (isub1 Y) Z X)
(TAK30 (isub1 Z) X Y)))))
(DEFUN TAK90 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK91 (TAK67 (isub1 X) Y Z)
(TAK1 (isub1 Y) Z X)
(TAK47 (isub1 Z) X Y)))))
(DEFUN TAK91 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK92 (TAK4 (isub1 X) Y Z)
(TAK12 (isub1 Y) Z X)
(TAK64 (isub1 Z) X Y)))))
(DEFUN TAK92 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK93 (TAK41 (isub1 X) Y Z)
(TAK23 (isub1 Y) Z X)
(TAK81 (isub1 Z) X Y)))))
(DEFUN TAK93 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK94 (TAK78 (isub1 X) Y Z)
(TAK34 (isub1 Y) Z X)
(TAK98 (isub1 Z) X Y)))))
(DEFUN TAK94 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK95 (TAK15 (isub1 X) Y Z)
(TAK45 (isub1 Y) Z X)
(TAK15 (isub1 Z) X Y)))))
(DEFUN TAK95 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK96 (TAK52 (isub1 X) Y Z)
(TAK56 (isub1 Y) Z X)
(TAK32 (isub1 Z) X Y)))))
(DEFUN TAK96 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK97 (TAK89 (isub1 X) Y Z)
(TAK67 (isub1 Y) Z X)
(TAK49 (isub1 Z) X Y)))))
(DEFUN TAK97 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK98 (TAK26 (isub1 X) Y Z)
(TAK78 (isub1 Y) Z X)
(TAK66 (isub1 Z) X Y)))))
(DEFUN TAK98 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK99 (TAK63 (isub1 X) Y Z)
(TAK89 (isub1 Y) Z X)
(TAK83 (isub1 Z) X Y)))))
(DEFUN TAK99 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK0 (TAK0 (isub1 X) Y Z)
(TAK0 (isub1 Y) Z X)
(TAK0 (isub1 Z) X Y)))))
(de timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)))
∂30-Apr-84 1241 KESSLER@UTAH-20.ARPA Cray timings
Received: from UTAH-20.ARPA by SU-AI.ARPA with TCP; 30 Apr 84 12:38:02 PDT
Date: Mon 30 Apr 84 13:38:43-MDT
From: Robert R. Kessler <KESSLER@UTAH-20.ARPA>
Subject: Cray timings
To: rpg@SU-AI.ARPA, Griss@UTAH-20.ARPA
Here are the numbers as of this morning. Note, about 3 tests don't
work due to missing function wgetv, which Wayne is trying to correct,
defstruct isn't on the cray yet, so another one doesn't work. Finally,
the 2nd fploy test is incorrect, since it requires big nums, which also
isn't on there yet. I'll forward the wgetv numbers if and when I get
them. At least this will give a flavor of the speed. Notice I edited out
the function definitions, so you can extract what you need (I hope).
Bob.
-----------------
08:17:57 000:55.326 ------------------------------------------------------------$2 ε
08:17:58 000:55.847 Boyer Test
08:19:08 001:23.710 Cpu (- GC) Time = 1852.68500000 secs$2 ε
08:19:10 001:24.230 Elapsed Time = 0. secs
08:19:11 001:24.751 GC Time = 7592.79600000 secs$2 ε
08:19:13 001:25.272 Load Average Before = 0
08:19:15 001:25.792 Load Average After = 0
08:19:16 001:26.312 Average Load Average = 0.
08:19:19 001:26.834 ------------------------------------------------------------$2 ε
08:20:50 001:56.881 browse
08:22:11 002:23.844 Cpu (- GC) Time = 4676.80400000 secs$2 ε
08:22:13 002:24.365 Elapsed Time = 0. secs
08:22:17 002:24.885 GC Time = 5326.86400000 secs$2 ε
08:22:19 002:25.406 Load Average Before = 0
08:22:21 002:25.926 Load Average After = 0
08:22:24 002:26.447 Average Load Average = 0.
08:22:28 002:26.968 ------------------------------------------------------------$2 ε
08:23:55 002:52.110 DDeriv Test, also same as FDDeriv
08:24:36 003:05.621 Cpu (- GC) Time = 1422.06800000 secs$2 ε
08:24:37 003:06.141 Elapsed Time = 0. secs
08:24:39 003:06.662 GC Time = 2506.81300000 secs$2 ε
08:24:41 003:07.182 Load Average Before = 0
08:24:43 003:07.703 Load Average After = 0
08:24:45 003:08.223 Average Load Average = 0.
08:24:47 003:08.744 ------------------------------------------------------------$2 ε
08:26:10 003:30.927 Deriv Test.$2 π
08:26:42 003:41.959 Cpu (- GC) Time = 1279.98200000 secs$2 ε
08:26:44 003:42.480 Elapsed Time = 0. secs
08:26:45 003:43.000 GC Time = 1877.91400000 secs$2 ε
08:26:47 003:43.521 Load Average Before = 0
08:26:49 003:44.041 Load Average After = 0
08:26:50 003:44.561 Average Load Average = 0.
08:27:53 004:04.818 ------------------------------------------------------------$2 ε
08:27:55 004:05.339 `Destructive' Test
08:28:05 004:07.958 Cpu (- GC) Time = 451.72600000 secs$2 π
08:28:07 004:08.479 Elapsed Time = 0. secs
08:28:09 004:08.999 GC Time = 0. secs
08:28:10 004:09.519 Load Average Before = 0
08:28:12 004:10.039 Load Average After = 0
08:28:15 004:10.560 Average Load Average = 0.
08:28:17 004:11.081 ------------------------------------------------------------$2 ε
08:29:54 004:35.273 Div test 1, iterative version of div$2 ε
08:30:17 004:40.884 Cpu (- GC) Time = 580.90000000 secs$2 π
08:30:18 004:41.405 Elapsed Time = 0. secs
08:30:20 004:41.925 GC Time = 639.91100000 secs$2 π
08:30:22 004:42.446 Load Average Before = 0
08:30:24 004:42.966 Load Average After = 0
08:30:30 004:43.487 Average Load Average = 0.
08:30:32 004:44.008 ------------------------------------------------------------$2 ε
08:30:55 004:48.384 Div test 2, recursive version of div$2 ε
08:31:18 004:53.989 Cpu (- GC) Time = 575.17000000 secs$2 π
08:31:25 004:54.510 Elapsed Time = 0. secs
08:31:33 004:55.031 GC Time = 640.19100000 secs$2 π
08:31:43 004:55.551 Load Average Before = 0
08:31:44 004:56.072 Load Average After = 0
08:31:46 004:56.592 Average Load Average = 0.
08:31:48 004:57.113 ------------------------------------------------------------$2 ε
08:50:22 008:16.452 Fprint Test$2 π
08:50:43 008:22.907 Cpu (- GC) Time = 3617.90000000 secs$2 ε
08:50:44 008:23.428 Elapsed Time = 0. secs
08:50:48 008:23.948 GC Time = 0. secs
08:50:51 008:24.468 Load Average Before = 0
08:50:53 008:24.988 Load Average After = 0
08:50:55 008:25.509 Average Load Average = 0.
08:50:58 008:26.030 ------------------------------------------------------------$2 ε
08:52:56 008:41.891 fread test
08:54:04 009:08.283 Cpu (- GC) Time = 2.04078770e+04 secs$2 ¬
08:54:06 009:08.803 Elapsed Time = 0. secs
08:54:08 009:09.324 GC Time = 0. secs
08:54:10 009:09.844 Load Average Before = 0
08:54:12 009:10.364 Load Average After = 0
08:54:15 009:10.885 Average Load Average = 0.
08:54:17 009:11.406 ------------------------------------------------------------$2 ε
09:04:04 011:21.576 tprint test$2 π
09:11:03 012:35.839 Cpu (- GC) Time = 189.95300000 secs$2 π
09:11:05 012:36.359 Elapsed Time = 0. secs
09:11:07 012:36.880 GC Time = 0. secs
09:11:09 012:37.400 Load Average Before = 0
09:11:11 012:37.920 Load Average After = 0
09:11:13 012:38.440 Average Load Average = 0.
09:16:42 013:42.221 ------------------------------------------------------------$2 ε
09:16:47 013:42.743 TAK: Takai test, (TAK 18 12 6)
09:16:55 013:44.879 Cpu (- GC) Time = 44.68900000 secs
09:16:57 013:45.399 Elapsed Time = 0. secs
09:16:59 013:45.920 GC Time = 0. secs
09:17:01 013:46.440 Load Average Before = 0
09:17:03 013:46.960 Load Average After = 0
09:17:08 013:47.480 Average Load Average = 0.
09:17:10 013:48.002 ------------------------------------------------------------$2 ε
09:17:23 013:51.870 TAK: Takai test, (tak 10018 10012 10006)
09:17:32 013:54.006 Cpu (- GC) Time = 45.01200000 secs
09:17:35 013:54.527 Elapsed Time = 0. secs
09:17:37 013:55.047 GC Time = 0. secs
09:17:39 013:55.567 Load Average Before = 0
09:17:41 013:56.087 Load Average After = 0
09:17:43 013:56.608 Average Load Average = 0.
09:17:45 013:57.129 ------------------------------------------------------------$2 ε
09:19:05 014:08.269 TAKL: Takai test with lists$2 π
09:19:13 014:10.716 Cpu (- GC) Time = 306.72600000 secs$2 π
09:19:14 014:11.237 Elapsed Time = 0. secs
09:19:16 014:11.757 GC Time = 0. secs
09:19:18 014:12.277 Load Average Before = 0
09:19:20 014:12.797 Load Average After = 0
09:19:22 014:13.318 Average Load Average = 0.
09:26:32 015:46.151 ------------------------------------------------------------$2 ε
09:26:34 015:46.673 TAKR: Takai test--Gross Version with Lots of functions
09:26:42 015:48.838 Cpu (- GC) Time = 69.02000000 secs
09:26:44 015:49.359 Elapsed Time = 0. secs
09:26:46 015:49.879 GC Time = 0. secs
09:26:48 015:50.399 Load Average Before = 0
09:26:49 015:50.919 Load Average After = 0
09:26:51 015:51.440 Average Load Average = 0.
09:26:53 015:51.961 ------------------------------------------------------------$2 ε
09:27:33 016:01.501 STAK: Takai test using fluid binding$2 ε
09:27:53 016:04.913 Cpu (- GC) Time = 1119.51800000 secs$2 ε
09:27:55 016:05.433 Elapsed Time = 0. secs
09:27:56 016:05.953 GC Time = 0. secs
09:27:58 016:06.473 Load Average Before = 0
09:28:00 016:06.994 Load Average After = 0
09:28:02 016:07.514 Average Load Average = 0.
09:28:03 016:08.035 ------------------------------------------------------------$2 ε
09:29:01 016:17.075 CTAK: Takai test using catch and throw
09:29:26 016:19.878 Cpu (- GC) Time = 606.33700000 secs$2 π
09:29:28 016:20.398 Elapsed Time = 0. secs
09:29:30 016:20.918 GC Time = 0. secs
09:29:31 016:21.439 Load Average Before = 0
09:29:33 016:21.959 Load Average After = 0
09:29:35 016:22.479 Average Load Average = 0.
09:29:37 016:23.001 ------------------------------------------------------------$2 ε
09:33:02 017:13.321 FPOLY test 1$2 ε
09:33:10 017:15.405 Cpu (- GC) Time = 1.31200000 secs
09:33:12 017:15.926 Elapsed Time = 0. secs
09:33:13 017:16.446 GC Time = 0. secs
09:33:23 017:16.966 Load Average Before = 0
09:33:32 017:17.486 Load Average After = 0
09:33:36 017:18.007 Average Load Average = 0.
09:33:53 017:21.334 ------------------------------------------------------------$2 ε
09:33:54 017:21.855 FPOLY test 2$2 ε
09:34:01 017:23.939 Cpu (- GC) Time = 1.31000000 secs
09:34:03 017:24.459 Elapsed Time = 0. secs
09:34:05 017:24.980 GC Time = 0. secs
09:34:07 017:25.500 Load Average Before = 0
09:34:09 017:26.020 Load Average After = 0
09:34:10 017:26.541 Average Load Average = 0.
09:34:12 017:27.062 ------------------------------------------------------------$2 ε
09:34:23 017:30.389 FPOLY test 3$2 ε
09:34:35 017:32.474 Cpu (- GC) Time = 1.93400000 secs
09:34:42 017:32.994 Elapsed Time = 0. secs
09:34:46 017:33.515 GC Time = 0. secs
09:34:50 017:34.035 Load Average Before = 0
09:34:55 017:34.555 Load Average After = 0
09:34:57 017:35.077 Average Load Average = 0.
09:34:59 017:35.598 ------------------------------------------------------------$2 ε
09:35:02 017:36.691 |||||||||||||||FPOLY benchmark, N = 5|||||||||||||||$2 ε
09:35:16 017:40.018 FPOLY test 1$2 ε
09:35:35 017:42.116 Cpu (- GC) Time = 13.34000000 secs
09:35:37 017:42.636 Elapsed Time = 0. secs
09:35:39 017:43.157 GC Time = 0. secs
09:35:41 017:43.677 Load Average Before = 0
09:35:42 017:44.197 Load Average After = 0
09:35:44 017:44.718 Average Load Average = 0.
09:35:48 017:45.239 ------------------------------------------------------------$2 ε
09:36:11 017:48.574 FPOLY test 2$2 ε
09:36:21 017:50.668 Cpu (- GC) Time = 9.60700000 secs
09:36:23 017:51.188 Elapsed Time = 0. secs
09:36:25 017:51.709 GC Time = 0. secs
09:36:28 017:52.229 Load Average Before = 0
09:36:30 017:52.749 Load Average After = 0
09:36:38 017:53.270 Average Load Average = 0.
09:36:41 017:53.791 ------------------------------------------------------------$2 ε
09:36:52 017:57.122 FPOLY test 3$2 ε
09:37:04 017:59.228 Cpu (- GC) Time = 20.18400000 secs
09:37:05 017:59.748 Elapsed Time = 0. secs
09:37:22 018:00.269 GC Time = 0. secs
09:37:24 018:00.789 Load Average Before = 0
09:37:26 018:01.309 Load Average After = 0
09:37:29 018:01.830 Average Load Average = 0.
09:37:31 018:02.351 ------------------------------------------------------------$2 ε
09:37:34 018:03.471 |||||||||||||||FPOLY benchmark, N = 10|||||||||||||||$2 ¬
09:37:52 018:06.809 FPOLY test 1$2 ε
09:38:01 018:09.060 Cpu (- GC) Time = 142.37800000 secs$2 π
09:38:03 018:09.581 Elapsed Time = 0. secs
09:38:06 018:10.101 GC Time = 0. secs
09:38:08 018:10.621 Load Average Before = 0
09:38:13 018:11.141 Load Average After = 0
09:38:15 018:11.662 Average Load Average = 0.
09:38:17 018:12.183 ------------------------------------------------------------$2 ε
09:38:41 018:15.594 FPOLY test 2$2 ε
09:38:50 018:17.715 Cpu (- GC) Time = 33.05000000 secs
09:38:52 018:18.235 Elapsed Time = 0. secs
09:38:58 018:18.755 GC Time = 0. secs
09:38:59 018:19.275 Load Average Before = 0
09:39:01 018:19.796 Load Average After = 0
09:39:07 018:20.316 Average Load Average = 0.
09:39:08 018:20.837 ------------------------------------------------------------$2 ε
09:39:20 018:24.173 FPOLY test 3$2 ε
09:39:32 018:26.527 Cpu (- GC) Time = 229.48300000 secs$2 π
09:39:42 018:27.047 Elapsed Time = 0. secs
09:39:43 018:27.568 GC Time = 0. secs
09:39:54 018:28.088 Load Average Before = 0
09:39:57 018:28.608 Load Average After = 0
09:40:00 018:29.128 Average Load Average = 0.
09:40:05 018:29.649 ------------------------------------------------------------$2 ε
09:40:09 018:30.720 |||||||||||||||FPOLY benchmark, N = 15|||||||||||||||$2 ¬
09:40:35 018:34.174 FPOLY test 1$2 ε
09:40:45 018:37.374 Cpu (- GC) Time = 941.71600000 secs$2 π
09:40:54 018:37.894 Elapsed Time = 0. secs
09:40:56 018:38.414 GC Time = 0. secs
09:40:58 018:38.934 Load Average Before = 0
09:41:01 018:39.455 Load Average After = 0
09:41:04 018:39.975 Average Load Average = 0.
09:41:05 018:40.496 ------------------------------------------------------------$2 ε
09:41:19 018:44.249 FPOLY test 2$2 ε
09:41:30 018:46.391 Cpu (- GC) Time = 50.18300000 secs
09:41:33 018:46.911 Elapsed Time = 0. secs
09:41:34 018:47.431 GC Time = 0. secs
09:41:37 018:47.951 Load Average Before = 0
09:41:40 018:48.472 Load Average After = 0
09:41:42 018:48.992 Average Load Average = 0.
09:41:44 018:49.513 ------------------------------------------------------------$2 ε
09:42:01 018:52.861 FPOLY test 3$2 ε
09:42:21 018:59.617 Cpu (- GC) Time = 1605.61400000 secs$2 ε
09:42:22 019:00.139 Elapsed Time = 0. secs
09:42:24 019:00.659 GC Time = 580.25800000 secs$2 π
09:42:26 019:01.179 Load Average Before = 0
09:42:28 019:01.700 Load Average After = 0
09:42:30 019:02.220 Average Load Average = 0.
09:42:32 019:02.741 ------------------------------------------------------------$2 ε
14:25:53 001:22.341 Puzzle test
14:26:11 001:26.658 Cpu (- GC) Time = 1007.13500000 secs
14:26:14 001:27.178 Elapsed Time = 0. secs
14:26:18 001:27.699 GC Time = 0. secs
14:26:20 001:28.219 Load Average Before = 0
14:26:36 001:28.739 Load Average After = 0
14:26:40 001:29.260 Average Load Average = 0.
14:28:38 001:56.405 ------------------------------------------------------------
14:28:40 001:56.926 Triang test
14:29:57 002:16.273 Cpu (- GC) Time = 1.45426160e+04 secs
14:29:58 002:16.794 Elapsed Time = 0. secs
14:30:00 002:17.314 GC Time = 0. secs
14:30:02 002:17.834 Load Average Before = 0
14:30:03 002:18.354 Load Average After = 0
14:30:05 002:18.875 Average Load Average = 0.
14:30:07 002:19.396 ------------------------------------------------------------
Actually, here is the timing for the 3x3 prime square, searching primes < 100.
< 1000 is quite a bit longer.
Timing performed on Monday 05/14/84 at 10:10:01.
Cpu (- GC) Time = 0.605
Elapsed Time = 0.983333334
Wholine Time = 0.766666666
GC Time = 0.0
Load Average Before = 0.850517154
Load Average After = 0.85329127
Average Load Average = 0.85190421
Scott, when I compile this on the PERQ, load it, and then say
(disassemble 'ptimes1), it prints the first 17 instructions (1-16)
and then say `Vector index 37, out of bounds.' Also, it states that
no locals are used.
(defun ptimes1 (*x* y)
(prog (u* v)
(setq v (setq u* (ptimes2 y)))
a
(setq *x* (cddr *x*))
(if (null *x*)
(return u*))
(ptimes3 y)
(go a)))
(defun pr ()
(do () (())
(let ((v730 (progn (read)(read)))
(v750 (read))
(v780 (read))
(v780f (read))
(v730g (cadr (read)))
(v750g (cadr (read)))
(v780g (cadr (read)))
(v780fg (cadr (read))))
(print `(dec730cl (cpu ,v730 gc ,v730g)))
(print `(dec750cl (cpu ,v750 gc ,v750g)))
(print `(dec780cl (cpu ,v780 gc ,v780g)))
(print `(dec780cl-fpa (cpu ,v780f gc ,v780fg))))))
(defun pr2 ()
(do () (())
(let ((v730 (progn (read)(read)))
(v750 (read))
(v780 (read))
(v780f (read)))
(print `(dec730cl (cpu ,v730 gc 0.0)))
(print `(dec750cl (cpu ,v750 gc 0.0)))
(print `(dec780cl (cpu ,v780 gc 0.0)))
(print `(dec780cl-fpa (cpu ,v780f gc 0.0))))))
(load "data.bch")
(do-fchart1 'tak 'tak)